Menu Close

nice-calculus-0-1-dx-x-2-x-2-1-x-3-1-5-




Question Number 132741 by mnjuly1970 last updated on 16/Feb/21
             ...nice    calculus...    ∫_(0^(    )   ) ^( 1) (dx/((x−2)(x^2 (1−x)^3 )^(1/5) )) =?
nicecalculus01dx(x2)(x2(1x)3)15=?
Commented by MJS_new last updated on 16/Feb/21
I get −2^(1/10) π(√(1−((√5)/5)))≈−2.50340750  using the substitution t=(((2(1−x))/x))^(1/5)
Iget21/10π1552.50340750usingthesubstitutiont=(2(1x)x)1/5
Commented by MJS_new last updated on 16/Feb/21
yes of course. forgot the “−”
yesofcourse.forgotthe
Commented by Dwaipayan Shikari last updated on 16/Feb/21
Yes sir!But i think the result should be −ve
Yessir!Butithinktheresultshouldbeve
Commented by mnjuly1970 last updated on 16/Feb/21
bravo  mr Mj  thank you so much...
bravomrMjthankyousomuch
Answered by Dwaipayan Shikari last updated on 16/Feb/21
−∫_0 ^1 t^(−(3/5)) (1−t)^(−(2/5)) (1+t)^(−1) dt      1−x=t   _2 F_1 (a,b;c;z)=((Γ(c))/(Γ(c−b)Γ(b)))∫_0 ^1 x^(b−1) (1−x)^(c−b−1) (1−zx)^(−a) dx  b−1=−(3/5)⇒b=(2/5)  c−b−1=((−2)/5)⇒c=1  a=1   z=−1  −Γ((3/5))Γ((2/5)) _2 F_1 (1,(2/5),1,−1)=−∫_0 ^1 t^(−(3/5)) (1−t)^(−(2/5)) (1+t)^(−1) dt  =−((2(√2)π)/( (√(5−(√5))))) _2 F_1 (1,(2/5),1;−1)
01t35(1t)25(1+t)1dt1x=t2F1(a,b;c;z)=Γ(c)Γ(cb)Γ(b)01xb1(1x)cb1(1zx)adxb1=35b=25cb1=25c=1a=1z=1Γ(35)Γ(25)2F1(1,25,1,1)=01t35(1t)25(1+t)1dt=22π552F1(1,25,1;1)
Commented by mnjuly1970 last updated on 16/Feb/21
mercey   grateful...   hypergeometrey function...
merceygratefulhypergeometreyfunction

Leave a Reply

Your email address will not be published. Required fields are marked *