Menu Close

nice-calculus-0-1-ln-ln-1-x-1-3-Im-




Question Number 137474 by mnjuly1970 last updated on 03/Apr/21
                       .....nice  ........  calculus.....         ๐›—=โˆซ_0 ^( 1) ln(((ln((โˆš(1โˆ’x)))))^(1/3)  )              Im(๐›—)=???
โ€ฆ..niceโ€ฆโ€ฆ..calculusโ€ฆ..ฯ•=โˆซ01ln(ln(1โˆ’x)3)Im(ฯ•)=???
Answered by mindispower last updated on 03/Apr/21
Im(ฯ†)=(1/3)โˆซ_0 ^1 ln(ln(x))dx  =Im(1/3)โˆซ_(โˆ’โˆž) ^0 ln(t)e^t dt  =Im(1/3)โˆซ_0 ^โˆž ln(โˆ’x)e^(โˆ’x) dx  =((1ฯ€)/3)โˆซ_0 ^โˆž e^(โˆ’t) dt=(ฯ€/3)ฮ“(1)=(ฯ€/3)
Im(ฯ•)=13โˆซ01ln(ln(x))dx=Im13โˆซโˆ’โˆž0ln(t)etdt=Im13โˆซ0โˆžln(โˆ’x)eโˆ’xdx=1ฯ€3โˆซ0โˆžeโˆ’tdt=ฯ€3ฮ“(1)=ฯ€3
Commented by mnjuly1970 last updated on 03/Apr/21
 very nice ..thank you mr power...
verynice..thankyoumrpowerโ€ฆ
Answered by ร‘รฏ= last updated on 03/Apr/21
โˆซ_0 ^1 ln (((ln ((โˆš(1โˆ’x)))))^(1/3) )=(1/3)โˆซ_0 ^1 ln (ln (โˆšx))dx=(1/3)โˆซ_0 ^1 ln ((1/2)ln x)dx  =(1/3)โˆซ_0 ^1 (โˆ’ln 2+ln lnx)dx=โˆ’(1/3)ln 2+(1/3)โˆซ_0 ^1 ln lnxdx  =โˆ’(1/3)ln 2+(1/3)โˆซ_(โˆ’โˆž) ^0 e^u ln udu  =โˆ’(1/3)ln2+(1/3)โˆซ_0 ^โˆž e^(โˆ’u) ln(โˆ’u)du  =โˆ’(1/3)ln2+(1/3)โˆซ_0 ^โˆž e^(โˆ’u) ln (e^(iฯ€) u)du  =โˆ’(1/3)ln2+(1/3)โˆซ_0 ^โˆž e^(โˆ’u) (lnu+iฯ€)du  =โˆ’(1/3)ln2+(1/3)(โˆ‚/โˆ‚a)โˆฃ_(a=0) โˆซ_0 ^โˆž u^a e^(โˆ’u) du+((iฯ€)/3)  =โˆ’(1/3)ln2+(1/3)(โˆ‚/โˆ‚a)โˆฃ_(a=0) ฮ“(a+1)+((iฯ€)/3)  =โˆ’(1/3)ln2+(1/3)ฯˆ(1)+((iฯ€)/3)  im(ฯ†)=(ฯ€/3)  โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’  โˆซ_0 ^1 (โˆ’1)^x dx=โˆซ_0 ^1 e^(iฯ€x) dx=((2i)/ฯ€)
โˆซ01ln(ln(1โˆ’x)3)=13โˆซ01ln(lnx)dx=13โˆซ01ln(12lnx)dx=13โˆซ01(โˆ’ln2+lnlnx)dx=โˆ’13ln2+13โˆซ01lnlnxdx=โˆ’13ln2+13โˆซโˆ’โˆž0eulnudu=โˆ’13ln2+13โˆซ0โˆžeโˆ’uln(โˆ’u)du=โˆ’13ln2+13โˆซ0โˆžeโˆ’uln(eiฯ€u)du=โˆ’13ln2+13โˆซ0โˆžeโˆ’u(lnu+iฯ€)du=โˆ’13ln2+13โˆ‚โˆ‚aโˆฃa=0โˆซ0โˆžuaeโˆ’udu+iฯ€3=โˆ’13ln2+13โˆ‚โˆ‚aโˆฃa=0ฮ“(a+1)+iฯ€3=โˆ’13ln2+13ฯˆ(1)+iฯ€3im(ฯ•)=ฯ€3โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆ’โˆซ01(โˆ’1)xdx=โˆซ01eiฯ€xdx=2iฯ€
Commented by mnjuly1970 last updated on 03/Apr/21
thanks alot ..
thanksalot..
Answered by Dwaipayan Shikari last updated on 03/Apr/21
(1/3)โˆซ_0 ^1 log((1/2)log(x))dx  =โˆ’(1/3)log(2)+(1/3)โˆซ_0 ^1 log(log(x))dx       x=e^(โˆ’t) โ‡’1=โˆ’e^(โˆ’t) (dt/dx)  =โˆ’(1/3)log(2)+(1/3)โˆซ_0 ^โˆž e^(โˆ’t) log(โˆ’t)dt  =โˆ’(1/3)log(2)+((ฯ€i)/3)โˆ’(ฮณ/3)  Im(ฯ†)=(ฯ€/3)
13โˆซ01log(12log(x))dx=โˆ’13log(2)+13โˆซ01log(log(x))dxx=eโˆ’tโ‡’1=โˆ’eโˆ’tdtdx=โˆ’13log(2)+13โˆซ0โˆžeโˆ’tlog(โˆ’t)dt=โˆ’13log(2)+ฯ€i3โˆ’ฮณ3Im(ฯ•)=ฯ€3
Commented by Dwaipayan Shikari last updated on 03/Apr/21
If it was โˆซ_0 ^1 log(((log((โˆš(1/(1โˆ’x))))))^(1/3) )dx then the answer will be  =((โˆ’1)/3)log(2)โˆ’(ฮณ/3)
Ifitwasโˆซ01log(log(11โˆ’x)3)dxthentheanswerwillbe=โˆ’13log(2)โˆ’ฮณ3
Commented by mnjuly1970 last updated on 03/Apr/21
 grateful mr payan...
gratefulmrpayanโ€ฆ

Leave a Reply

Your email address will not be published. Required fields are marked *