Menu Close

Nice-calculus-0-x-n-2-1-x-n-1-dx-




Question Number 131678 by liberty last updated on 07/Feb/21
 Nice calculus    ∫_0 ^∞  ((x^(n−2)  −1)/(x^n  +1)) dx ?
$$\:\mathrm{Nice}\:\mathrm{calculus}\: \\ $$$$\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{n}−\mathrm{2}} \:−\mathrm{1}}{\mathrm{x}^{\mathrm{n}} \:+\mathrm{1}}\:\mathrm{dx}\:? \\ $$
Answered by Dwaipayan Shikari last updated on 07/Feb/21
∫_0 ^∞ (x^(n−2) /(x^n +1))−(1/(1+x^n ))dx              x^n =u  =(1/n)∫_0 ^∞ (x^(−1) /(u+1))−(x^(1−n) /(u+1))du  =(1/n)∫_0 ^∞ (u^(−(1/n)) /(u+1))du−(1/n)∫_0 ^∞ (u^((1−n)/n) /(1+u))du  =(1/n).(π/(sin(π(1−(1/n)))))−(1/n).(π/(sin((π/n))))=0
$$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{{n}−\mathrm{2}} }{{x}^{{n}} +\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{1}+{x}^{{n}} }{dx}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{{n}} ={u} \\ $$$$=\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\infty} \frac{{x}^{−\mathrm{1}} }{{u}+\mathrm{1}}−\frac{{x}^{\mathrm{1}−{n}} }{{u}+\mathrm{1}}{du} \\ $$$$=\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\infty} \frac{{u}^{−\frac{\mathrm{1}}{{n}}} }{{u}+\mathrm{1}}{du}−\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\infty} \frac{{u}^{\frac{\mathrm{1}−{n}}{{n}}} }{\mathrm{1}+{u}}{du} \\ $$$$=\frac{\mathrm{1}}{{n}}.\frac{\pi}{{sin}\left(\pi\left(\mathrm{1}−\frac{\mathrm{1}}{{n}}\right)\right)}−\frac{\mathrm{1}}{{n}}.\frac{\pi}{{sin}\left(\frac{\pi}{{n}}\right)}=\mathrm{0} \\ $$
Answered by Dwaipayan Shikari last updated on 07/Feb/21
∫_0 ^∞ ((x^(n−2) −1)/(x^n +1))dx         x=(1/t)  =∫_0 ^∞ ((t^2 −t^n )/(t^n +1)).(1/t^2 )dt=−∫_0 ^∞ ((t^(n−2) −1)/(t^n +1))dt=I  2I=0⇒I=0
$$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{{n}−\mathrm{2}} −\mathrm{1}}{{x}^{{n}} +\mathrm{1}}{dx}\:\:\:\:\:\:\:\:\:{x}=\frac{\mathrm{1}}{{t}} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\mathrm{2}} −{t}^{{n}} }{{t}^{{n}} +\mathrm{1}}.\frac{\mathrm{1}}{{t}^{\mathrm{2}} }{dt}=−\int_{\mathrm{0}} ^{\infty} \frac{{t}^{{n}−\mathrm{2}} −\mathrm{1}}{{t}^{{n}} +\mathrm{1}}{dt}={I} \\ $$$$\mathrm{2}{I}=\mathrm{0}\Rightarrow{I}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *