Menu Close

nice-calculus-evaluate-0-1-ln-1-x-x-3-




Question Number 137874 by mnjuly1970 last updated on 07/Apr/21
                     .......nice ... .... calculus....      evaluate ::              Ω=∫_0 ^( 1) (((ln(1−x))/x))^3 =?....
.nice.calculus.evaluate::Ω=01(ln(1x)x)3=?.
Answered by EnterUsername last updated on 07/Apr/21
Ω=∫_0 ^1 (((ln(1−x))/x))^3 dx  =∫_0 ^1 ((ln^3 x)/((1−x)^3 ))dx=[((ln^3 x)/(2(1−x)^2 ))−(3/2)∫((ln^2 x)/(x(1−x)^2 ))dx]_0 ^1   =[((ln^3 x)/(2(1−x)^2 ))−(3/2)∫((1/x)+(1/(1−x))+(1/((1−x)^2 )))ln^2 xdx]_0 ^1   =[((ln^3 x)/(2(1−x)^2 ))−((ln^3 x)/2)−(3/2)∫((ln^2 x)/(1−x))dx−(3/2)∫((ln^2 x)/((1−x)^2 ))dx]_0 ^1   =−(3/2)(∫_0 ^1 ((ln^2 x)/(1−x))dx+∫_0 ^1 ((ln^2 x)/((1−x)^2 ))dx)=−(3/2)(−ψ′′(1)+2ζ(2))  =−(3/2)(2ζ(3)+2ζ(2))=−3(ζ(3)+ζ(2))
Ω=01(ln(1x)x)3dx=01ln3x(1x)3dx=[ln3x2(1x)232ln2xx(1x)2dx]01=[ln3x2(1x)232(1x+11x+1(1x)2)ln2xdx]01=[ln3x2(1x)2ln3x232ln2x1xdx32ln2x(1x)2dx]01=32(01ln2x1xdx+01ln2x(1x)2dx)=32(ψ(1)+2ζ(2))=32(2ζ(3)+2ζ(2))=3(ζ(3)+ζ(2))
Commented by EnterUsername last updated on 07/Apr/21
See Q137829 for ∫_0 ^1 ((ln^2 x)/((1−x)^2 ))dx=2ζ(2)
SeeQ137829for01ln2x(1x)2dx=2ζ(2)
Commented by mnjuly1970 last updated on 07/Apr/21
very nice solution thanks alot  master ....
verynicesolutionthanksalotmaster.

Leave a Reply

Your email address will not be published. Required fields are marked *