nice-calculus-evaluate-0-1-ln-1-x-x-3- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 137874 by mnjuly1970 last updated on 07/Apr/21 …….nice…….calculus….evaluate::Ω=∫01(ln(1−x)x)3=?…. Answered by EnterUsername last updated on 07/Apr/21 Ω=∫01(ln(1−x)x)3dx=∫01ln3x(1−x)3dx=[ln3x2(1−x)2−32∫ln2xx(1−x)2dx]01=[ln3x2(1−x)2−32∫(1x+11−x+1(1−x)2)ln2xdx]01=[ln3x2(1−x)2−ln3x2−32∫ln2x1−xdx−32∫ln2x(1−x)2dx]01=−32(∫01ln2x1−xdx+∫01ln2x(1−x)2dx)=−32(−ψ″(1)+2ζ(2))=−32(2ζ(3)+2ζ(2))=−3(ζ(3)+ζ(2)) Commented by EnterUsername last updated on 07/Apr/21 SeeQ137829for∫01ln2x(1−x)2dx=2ζ(2) Commented by mnjuly1970 last updated on 07/Apr/21 verynicesolutionthanksalotmaster…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Evaluate-5-5-25-x-2-dx-using-an-algebraic-method-Geometrical-mehod-thanks-in-advanced-great-mathematicians-Next Next post: Proof-by-mathematical-induction-that-f-n-n-3-5n-is-a-multiple-of-6- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.