Menu Close

nice-calculus-evaluate-0-1-x-e-pi-1-x-e-1-ln-x-1-3-dx-3-pi-




Question Number 138742 by mnjuly1970 last updated on 17/Apr/21
           ........ nice   ....   calculus...    evaluate ::          Ω=∫_0 ^( 1) ((x^(e^π −1) −x^(e^γ −1) )/(ln((x)^(1/3)  )))dx=^? 3(π−γ)
..nice.calculusevaluate::Ω=01xeπ1xeγ1ln(x3)dx=?3(πγ)
Answered by Dwaipayan Shikari last updated on 17/Apr/21
3∫_0 ^1 ((x^(e^π −1) −x^(e^γ −1) )/(log(x)))dx=3χ(e^π −1,e^γ −1)=3(π−γ)  χ(a,b)=∫_0 ^1 ((x^a −x^b )/(log(x)))dx  (∂/∂a)χ(a,b)=(1/(a+1))⇒χ(a,b)=log(a+1)+C  χ(b,b)=0 ⇒C=−log(b+1)  ⇒χ(a,b)=log(((a+1)/(b+1)))
301xeπ1xeγ1log(x)dx=3χ(eπ1,eγ1)=3(πγ)χ(a,b)=01xaxblog(x)dxaχ(a,b)=1a+1χ(a,b)=log(a+1)+Cχ(b,b)=0C=log(b+1)χ(a,b)=log(a+1b+1)
Commented by Ar Brandon last updated on 17/Apr/21
Wow cool! I was supposed to remain at  the first power.
Wowcool!Iwassupposedtoremainatthefirstpower.
Commented by mnjuly1970 last updated on 17/Apr/21
tashakor ...mercey..
tashakormercey..
Answered by Ar Brandon last updated on 17/Apr/21
Ω=∫_0 ^1 ((x^(e^π −1) −x^(e^γ −1) )/(ln((x)^(1/3) )))dx, u=x^(1/3) ⇒3u^2 du=dx      =∫_0 ^1 ((u^(3(e^π −1)) −u^(3(e^γ −1)) )/(ln(u)))(3u^2 du)=3∫_0 ^1 ((u^(3e^π −1) −u^(3e^γ −1) )/(ln(u)))du  f(α)=3∫_0 ^1 ((u^(3e^π +α) −u^(3e^γ +α) )/(ln(u)))du  f ′(α)=3∫_0 ^1 (u^(3e^π +α) −u^(3e^γ +α) )du             =3[(u^(3e^π +α+1) /(3e^π +α+1))−(u^(3e^γ +α+1) /(3e^γ +α+1))]_0 ^1       =3[(1/(3e^π +α+1))−(1/(3e^γ +α+1))]  f(α)=3ln(3e^π +α+1)−3ln(3e^γ +α+1)+C
Ω=01xeπ1xeγ1ln(x3)dx,u=x133u2du=dx=01u3(eπ1)u3(eγ1)ln(u)(3u2du)=301u3eπ1u3eγ1ln(u)duf(α)=301u3eπ+αu3eγ+αln(u)duf(α)=301(u3eπ+αu3eγ+α)du=3[u3eπ+α+13eπ+α+1u3eγ+α+13eγ+α+1]01=3[13eπ+α+113eγ+α+1]f(α)=3ln(3eπ+α+1)3ln(3eγ+α+1)+C
Commented by mnjuly1970 last updated on 17/Apr/21
thanks alot...
thanksalot

Leave a Reply

Your email address will not be published. Required fields are marked *