Menu Close

nice-calculus-evaluate-0-2pi-1-1-cos-4-x-dx-




Question Number 137155 by mnjuly1970 last updated on 30/Mar/21
        ......nice    calculus ......        evaluate ::               𝛗=∫_0 ^( 2π) (1/(1+cos^4 (x)))dx=???
nicecalculusevaluate::ϕ=02π11+cos4(x)dx=???
Answered by Ar Brandon last updated on 30/Mar/21
φ=∫_0 ^(2π) (dx/(1+cos^4 x))=4∫_0 ^(π/2) ((sec^4 x)/(sec^4 x+1))dx , t=tanx     =4∫_0 ^∞ ((t^2 +1)/((t^2 +1)^2 +1))dt=4∫_0 ^∞ ((t^2 +1)/(t^4 +2t^2 +2))dt     =2∫_0 ^∞ (((t^2 +(√2))+(t^2 −(√2)))/(t^4 +2t^2 +2))dt+(2/( (√2)))∫_0 ^∞ (((t^2 +(√2))−(t^2 −(√2)))/(t^4 +2t^2 +2))dt     =2∫_0 ^∞ {(((1+((√2)/t^2 ))+(1−((√2)/t^2 )))/(t^2 +2+(2/t^2 )))}dt+(2/( (√2)))∫_0 ^∞ {(((1+((√2)/t^2 ))−(1−((√2)/t^2 )))/(t^2 +2+(2/t^2 )))}dt     =2∫_0 ^∞ {((1+((√2)/t^2 ))/((t−((√2)/t))^2 +2(√2)+2))+((1−((√2)/t^2 ))/((t+((√2)/t))^2 +2−2(√2)))}dt       +(2/( (√2)))∫_0 ^∞ {((1+((√2)/t^2 ))/((t−((√2)/t))^2 +2(√2)+2))−((1−((√2)/t^2 ))/((t+((√2)/t))^2 +2−2(√2)))}dt      =2∫_(−∞) ^(+∞) (du/(u^2 +2(√2)+2))+(2/( (√2)))∫_(−∞) ^(+∞) (dv/(v^2 +2(√2)+2))      =[(2/( (√(2(√2)+2))))tan^(−1) ((u/( (√(2(√2)+2)))))+((√2)/( (√(2(√2)+2))))tan^(−1) ((v/( (√(2(√2)+2)))))]_(−∞) ^(+∞)       =((2π)/( (√(2(√2)+2))))+(((√2)π)/( (√(2(√2)+2))))
ϕ=02πdx1+cos4x=40π2sec4xsec4x+1dx,t=tanx=40t2+1(t2+1)2+1dt=40t2+1t4+2t2+2dt=20(t2+2)+(t22)t4+2t2+2dt+220(t2+2)(t22)t4+2t2+2dt=20{(1+2t2)+(12t2)t2+2+2t2}dt+220{(1+2t2)(12t2)t2+2+2t2}dt=20{1+2t2(t2t)2+22+2+12t2(t+2t)2+222}dt+220{1+2t2(t2t)2+22+212t2(t+2t)2+222}dt=2+duu2+22+2+22+dvv2+22+2=[222+2tan1(u22+2)+222+2tan1(v22+2)]+=2π22+2+2π22+2
Commented by Ar Brandon last updated on 30/Mar/21
Not 100% sure... Please check
Not100%surePleasecheck
Commented by Dwaipayan Shikari last updated on 30/Mar/21
((2+(√2))/( (√(2(√2)+2))))π=(√(1+(√2))) π
2+222+2π=1+2π
Commented by mnjuly1970 last updated on 30/Mar/21
 thanks alot mr brandon..
thanksalotmrbrandon..
Commented by mnjuly1970 last updated on 30/Mar/21
grateful mr payan...
gratefulmrpayan
Commented by Ar Brandon last updated on 30/Mar/21
Cool
Answered by mathmax by abdo last updated on 31/Mar/21
Φ=∫_0 ^(2π)  (dx/(1+cos^4 x)) ⇒Φ =∫_0 ^(2π)  (dx/(1+(((1+cos(2x))/2))^2 ))  =∫_0 ^(2π)  ((4dx)/(4+(1+2cos(2x)+cos^2 (2x)))) =4∫_0 ^(2π)  (dx/(5 +2cos(2x)+((1+cos(4x))/2)))  =8 ∫_0 ^(2π)  (dx/(10+4cos(2x)+1+cos(4x))) =8 ∫_0 ^(2π)  (dx/(11+4cos(2x)+cos(4x)))  =_(2x=t)    8∫_0 ^(4π)  (dt/(2(11+4cost +cos(2t)))) =4 ∫_0 ^(4π)  (dt/(11+4cost +2cos^2 t−1))  =4 ∫_0 ^(4π)  (dt/(2cos^2 t+4cost +10)) =2∫_0 ^(4π)  (dt/(cos^2 t+2cost +5))  z^2  +2z+5=0→Δ^′  =1−5=−4 ⇒z_1 =−1+2i and z_2 =−1−2i ⇒  cos^2 t+2cost+5 =(cost−z_1 )(cost−z_2 ) ⇒  (1/(cos^2 t+2cost+5)) =(1/((cost−z_1 )(cost−z_2 )))  =((1/(cost−z_1 ))−(1/(cost−z_2 )))×(1/(4i)) ⇒  Φ =(1/(2i))∫_0 ^(4π)  (dt/(cost−z_1 ))−(1/(2i))∫_0 ^(4π)  (dt/(cost−z_2 ))  =−i∫_0 ^(2π)  (dt/(cost−z_1 )) +i∫_0 ^(2π) (dt/(cost−z_2 )) =−iH +iK  H =_(z=e^(it) )    ∫_(∣z∣=1)     (dz/(iz(((z+z^(−1) )/2)+1−2i)))  =∫_(∣z∣=1)   ((2dz)/(iz(z+z^(−1)  +2−4i))) =∫ ((−2i)/(z^2  +1+(2−4i)z))  ϕ(z)=((−2i)/(z^2  +(2−4i)z +1))  poles?  Δ^′  =(1−2i)^2 −1 =1−4i−4−1 =−4(1+i) =−4(√2)e^((iπ)/4)  ⇒  (√Δ^, )=2i(^4 (√2)) e^((iπ)/8)  ⇒z_1 =−1+2i +2i(^4 (√2))e^((iπ)/8)   =−1+2i +2i(^4 (√2))(((√(2+(√2)))/2)+i((√(2−(√2)))/2))  =−1+2i+2i(^4 (√2))((√(2+(√2)))/2) −(^4 (√2))(√(2−(√2)))  =−1+2i+i(^4 (√2))(√(2+(√2)))−(^4 (√2))(√(2−(√2)))  ⇒∣z_1 ∣=(√((1+(^4 (√2))(√(2−(√2))))^2  +(√2)(2+(√2)))) ....be continued....
Φ=02πdx1+cos4xΦ=02πdx1+(1+cos(2x)2)2=02π4dx4+(1+2cos(2x)+cos2(2x))=402πdx5+2cos(2x)+1+cos(4x)2=802πdx10+4cos(2x)+1+cos(4x)=802πdx11+4cos(2x)+cos(4x)=2x=t804πdt2(11+4cost+cos(2t))=404πdt11+4cost+2cos2t1=404πdt2cos2t+4cost+10=204πdtcos2t+2cost+5z2+2z+5=0Δ=15=4z1=1+2iandz2=12icos2t+2cost+5=(costz1)(costz2)1cos2t+2cost+5=1(costz1)(costz2)=(1costz11costz2)×14iΦ=12i04πdtcostz112i04πdtcostz2=i02πdtcostz1+i02πdtcostz2=iH+iKH=z=eitz∣=1dziz(z+z12+12i)=z∣=12dziz(z+z1+24i)=2iz2+1+(24i)zφ(z)=2iz2+(24i)z+1poles?Δ=(12i)21=14i41=4(1+i)=42eiπ4Δ,=2i(42)eiπ8z1=1+2i+2i(42)eiπ8=1+2i+2i(42)(2+22+i222)=1+2i+2i(42)2+22(42)22=1+2i+i(42)2+2(42)22⇒∣z1∣=(1+(42)22)2+2(2+2).becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *