Question Number 137155 by mnjuly1970 last updated on 30/Mar/21

Answered by Ar Brandon last updated on 30/Mar/21
![φ=∫_0 ^(2π) (dx/(1+cos^4 x))=4∫_0 ^(π/2) ((sec^4 x)/(sec^4 x+1))dx , t=tanx =4∫_0 ^∞ ((t^2 +1)/((t^2 +1)^2 +1))dt=4∫_0 ^∞ ((t^2 +1)/(t^4 +2t^2 +2))dt =2∫_0 ^∞ (((t^2 +(√2))+(t^2 −(√2)))/(t^4 +2t^2 +2))dt+(2/( (√2)))∫_0 ^∞ (((t^2 +(√2))−(t^2 −(√2)))/(t^4 +2t^2 +2))dt =2∫_0 ^∞ {(((1+((√2)/t^2 ))+(1−((√2)/t^2 )))/(t^2 +2+(2/t^2 )))}dt+(2/( (√2)))∫_0 ^∞ {(((1+((√2)/t^2 ))−(1−((√2)/t^2 )))/(t^2 +2+(2/t^2 )))}dt =2∫_0 ^∞ {((1+((√2)/t^2 ))/((t−((√2)/t))^2 +2(√2)+2))+((1−((√2)/t^2 ))/((t+((√2)/t))^2 +2−2(√2)))}dt +(2/( (√2)))∫_0 ^∞ {((1+((√2)/t^2 ))/((t−((√2)/t))^2 +2(√2)+2))−((1−((√2)/t^2 ))/((t+((√2)/t))^2 +2−2(√2)))}dt =2∫_(−∞) ^(+∞) (du/(u^2 +2(√2)+2))+(2/( (√2)))∫_(−∞) ^(+∞) (dv/(v^2 +2(√2)+2)) =[(2/( (√(2(√2)+2))))tan^(−1) ((u/( (√(2(√2)+2)))))+((√2)/( (√(2(√2)+2))))tan^(−1) ((v/( (√(2(√2)+2)))))]_(−∞) ^(+∞) =((2π)/( (√(2(√2)+2))))+(((√2)π)/( (√(2(√2)+2))))](https://www.tinkutara.com/question/Q137160.png)
Commented by Ar Brandon last updated on 30/Mar/21

Commented by Dwaipayan Shikari last updated on 30/Mar/21

Commented by mnjuly1970 last updated on 30/Mar/21

Commented by mnjuly1970 last updated on 30/Mar/21

Commented by Ar Brandon last updated on 30/Mar/21
Cool
Answered by mathmax by abdo last updated on 31/Mar/21
