nice-calculus-find-0-1-ln-x-ln-1-x-x-1-x-dx- Tinku Tara June 3, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 134852 by mnjuly1970 last updated on 07/Mar/21 β¦nicecalculusβ¦find:::Ο=β«01ln(x)ln(1βx)x(1βx)dx=? Answered by mnjuly1970 last updated on 07/Mar/21 Ο=β«01ln(x)ln(1βx)1βx+ln(x)ln(1βx)xdx=[β12ln2(1βx)ln(x)]01+12β«01ln2(1βx)xdx+[12ln2(x)ln(1βx)]01+12β«01ln2(x)1βxdx=ΞΆ(3)+12β«01ln2(1βt)tdt=2ΞΆ(3)β¦ββ Answered by ΓΓ―= last updated on 08/Mar/21 Ο=β«01ln(x)ln(1βx)x(1βx)dx=β«01lnxln(1βx)x+lnxln(1βx)1βxdx=2β«01ln(1βx)lnxx=β2Li2(x)lnxβ£01+2β«01Li2(x)xdx=2Li3(x)β£01=2Li3(1)=2ΞΆ(3) Commented by mnjuly1970 last updated on 08/Mar/21 thanksalotβ¦ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-why-the-root-is-so-thing-How-can-i-make-it-bold-Next Next post: Question-134858 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.