Menu Close

nice-calculus-find-0-1-ln-x-ln-1-x-x-1-x-dx-




Question Number 134852 by mnjuly1970 last updated on 07/Mar/21
              ...nice    calculus...        find :::                𝛗=∫_0 ^( 1) ((ln(x)ln(1βˆ’x))/(x(1βˆ’x)))dx=?
…nicecalculus…find:::Ο•=∫01ln(x)ln(1βˆ’x)x(1βˆ’x)dx=?
Answered by mnjuly1970 last updated on 07/Mar/21
            𝛗=∫_0 ^( 1) ((ln(x)ln(1βˆ’x))/(1βˆ’x))+((ln(x)ln(1βˆ’x))/x)dx  =[βˆ’(1/2)ln^2 (1βˆ’x)ln(x)]_0 ^1 +(1/2)∫_0 ^( 1) ((ln^2 (1βˆ’x))/x)dx  +[(1/2)ln^2 (x)ln(1βˆ’x)]_0 ^1 +(1/2)∫_0 ^( 1) ((ln^2 (x))/(1βˆ’x))dx  =ΞΆ(3)+(1/2)∫_0 ^( 1) ((ln^2 (1βˆ’t))/t)dt=2ΞΆ(3)...βœ“βœ“
Ο•=∫01ln(x)ln(1βˆ’x)1βˆ’x+ln(x)ln(1βˆ’x)xdx=[βˆ’12ln2(1βˆ’x)ln(x)]01+12∫01ln2(1βˆ’x)xdx+[12ln2(x)ln(1βˆ’x)]01+12∫01ln2(x)1βˆ’xdx=ΞΆ(3)+12∫01ln2(1βˆ’t)tdt=2ΞΆ(3)β€¦βœ“βœ“
Answered by Ñï= last updated on 08/Mar/21
𝛗=∫_0 ^( 1) ((ln(x)ln(1βˆ’x))/(x(1βˆ’x)))dx=∫_0 ^1 ((lnxln(1βˆ’x))/x)+((lnxln(1βˆ’x))/(1βˆ’x))dx  =2∫_0 ^1 ((ln(1βˆ’x)lnx)/x)  =βˆ’2Li_2 (x)lnx∣_0 ^1 +2∫_0 ^1 ((Li_2 (x))/x)dx  =2Li_3 (x)∣_0 ^1   =2Li_3 (1)=2ΞΆ(3)
Ο•=∫01ln(x)ln(1βˆ’x)x(1βˆ’x)dx=∫01lnxln(1βˆ’x)x+lnxln(1βˆ’x)1βˆ’xdx=2∫01ln(1βˆ’x)lnxx=βˆ’2Li2(x)lnx∣01+2∫01Li2(x)xdx=2Li3(x)∣01=2Li3(1)=2ΞΆ(3)
Commented by mnjuly1970 last updated on 08/Mar/21
thanks alot ...
thanksalot…

Leave a Reply

Your email address will not be published. Required fields are marked *