Menu Close

nice-calculus-find-0-xe-x-coth-x-2-dx-




Question Number 136225 by mnjuly1970 last updated on 19/Mar/21
                  .....nice   calculus               find :: Ω=∫_0 ^( ∞) xe^(−x) coth((x/2))dx=?
$$\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..{nice}\:\:\:{calculus}\:\: \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:{find}\:::\:\Omega=\int_{\mathrm{0}} ^{\:\infty} {xe}^{−{x}} {coth}\left(\frac{{x}}{\mathrm{2}}\right){dx}=? \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Answered by Dwaipayan Shikari last updated on 19/Mar/21
∫_0 ^∞ xe^(−x) ((e^x +1)/(e^x −1))dx  =Σ_(n=1) ^∞ ∫_0 ^∞ xe^(−nx) (1+e^(−x) )dx  =Σ_(n=1) ^∞ (1/n^2 )∫_0 ^∞ ue^(−u) +Σ_(n=1) ^∞ (1/((n+1)^2 ))∫_0 ^∞ ue^(−u) du  =(π^2 /6)+(π^2 /6)−1=(π^2 /3)−1
$$\int_{\mathrm{0}} ^{\infty} {xe}^{−{x}} \frac{{e}^{{x}} +\mathrm{1}}{{e}^{{x}} −\mathrm{1}}{dx} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\infty} {xe}^{−{nx}} \left(\mathrm{1}+{e}^{−{x}} \right){dx} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} {ue}^{−{u}} +\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} {ue}^{−{u}} {du} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\mathrm{1}=\frac{\pi^{\mathrm{2}} }{\mathrm{3}}−\mathrm{1} \\ $$
Commented by mnjuly1970 last updated on 19/Mar/21
 grateful and thank you...
$$\:{grateful}\:{and}\:{thank}\:{you}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *