Menu Close

nice-calculus-find-the-value-of-n-1-6n-2-5n-1-




Question Number 138821 by mnjuly1970 last updated on 18/Apr/21
               ....... nice .. .. .. calculus......  find the value of:           Θ=Σ_(n=−∞ ) ^∞ (1/(6n^2 +5n+1))=?
.nice......calculusfindthevalueof:Θ=n=16n2+5n+1=?
Commented by Kamel last updated on 19/Apr/21
You can use digamma function or residue theorem.
Youcanusedigammafunctionorresiduetheorem.
Answered by Kamel last updated on 19/Apr/21
Θ=Σ_(n=−∞) ^(+∞) (1/(6n^2 +5n+1))=(1/6)Σ_(n=−∞) ^(+∞) (1/((n+(1/2))(n+(1/3))))     =lim_(N→+∞) Σ_(n=0) ^N ((1/(n+(1/3)))−(1^ /(n+(1/2)))+(1/(−n+(1/3)))−(1/(−n+(1/2))))−1     =lim_(N→+∞) Σ_(n=0) ^N {3((1/(3n+1))−(1/(3n−1)))−2((1/(2n+1))−(1/(2n−1)))}−1     =lim_(N→+∞) Σ_(n=0) ^(N−1) 3((1/(3n+1))−(1/(3n+2)))=3Σ_(n=0) ^(+∞) (1/((3n+1)(3n+2)))     Put: f(x)=Σ_(n=0) ^(+∞) (x^(3n+2) /((3n+1)(3n+2))), 0≤x<1.  f′′(x)=Σ_(n=0) ^(+∞) x^(3n) =(1/(1−x^3 ))=(1/((1−x)(1+x+x^2 )))=(1/3)((1/(1−x))+((2x+1+3)/(2(x^2 +x+1))))   ∴ f′(x)+C=(1/3)(−Ln(1−x)+(1/2)Ln(x^2 +x+1)+(√3)Arctan((2/( (√3)))(x+(1/2)))  f′(0)=0⇒C=(π/( 6(√3)))  f(1)=−(1/3)∫_0 ^1 Ln(x)dx+(1/6)∫_0 ^1 Ln(x^2 +x+1)dx+(1/( (√3)))∫_0 ^1 Arctan((2/( (√3)))(x+(1/2)))dx−(π/( 6(√3)))  I=∫Ln(x^2 +x+1)dx=xLn(x^2 +x+1)−∫((2(x^2 +x+1)−x−2)/(x^2 +x+1))dx    =xLn(x^2 +x+1)−2x+∫((x+2)/(x^2 +x+1))dx    =(x+(1/2))Ln(x^2 +x+1)−2x+(√3)Arctan((2/( (√3)))(x+(1/2)))  ∫Arctan(x)dx=xArctan(x)−(1/2)Ln(1+x^2 )  So: f(1)=(1/3)+(1/6)((3/2)Ln(3)−2+((π(√3))/3)−((π(√3))/6))+(1/2)((π/( (√3)))−(π/(6(√3)))−(1/( 2))Ln(3))−(π/(6(√3)))                   =((π(√3))/(36))+((5π)/(12(√3)))−(π/( 6(√3)))=(π/(3(√3))), Θ=3f(1)  ∴       Θ=(π/( (√3)))       ⇒          𝚺_(n=−∞) ^(+∞) (1/(6n^2 +5n+1))=((𝛑(√3))/3)                                          BENAICHA Kamel
Θ=+n=16n2+5n+1=16+n=1(n+12)(n+13)=limN+Nn=0(1n+131n+12+1n+131n+12)1=limN+Nn=0{3(13n+113n1)2(12n+112n1)}1=limN+N1n=03(13n+113n+2)=3+n=01(3n+1)(3n+2)Put:f(x)=+n=0x3n+2(3n+1)(3n+2),0x<1.f(x)=+n=0x3n=11x3=1(1x)(1+x+x2)=13(11x+2x+1+32(x2+x+1))f(x)+C=13(Ln(1x)+12Ln(x2+x+1)+3Arctan(23(x+12))f(0)=0C=π63f(1)=1301Ln(x)dx+1601Ln(x2+x+1)dx+1301Arctan(23(x+12))dxπ63I=Ln(x2+x+1)dx=xLn(x2+x+1)2(x2+x+1)x2x2+x+1dx=xLn(x2+x+1)2x+x+2x2+x+1dx=(x+12)Ln(x2+x+1)2x+3Arctan(23(x+12))Arctan(x)dx=xArctan(x)12Ln(1+x2)So:f(1)=13+16(32Ln(3)2+π33π36)+12(π3π6312Ln(3))π63=π336+5π123π63=π33,Θ=3f(1)Θ=π3+n=16n2+5n+1=π33BENAICHAKamel
Commented by mnjuly1970 last updated on 19/Apr/21
thanks alot mr Kmel...
thanksalotmrKmel
Answered by Dwaipayan Shikari last updated on 19/Apr/21
Σ_(n=−∞) ^∞ (1/((an^2 +bn+c)))=(1/( (√(b^2 −4ac))))(ψ(((b+(√(b^2 −4ac)))/2))−ψ(((b−(√(b^2 −4ac)))/2)))+Λ  Λ=(1/( (√(b^2 −4ac))))(ψ(1−(b/(2a))+((√(b^2 −4ac))/(2a)))−ψ(1−(b/(2a))−((√(b^2 −4ac))/(2a))))  Σ_(n=−∞) ^∞ (1/((6n^2 +5n+1)))=ψ((1/2))−ψ((1/3))+ψ((2/3))−ψ((1/2))  =πcot((π/3))=(π/( (√3)))
n=1(an2+bn+c)=1b24ac(ψ(b+b24ac2)ψ(bb24ac2))+ΛΛ=1b24ac(ψ(1b2a+b24ac2a)ψ(1b2ab24ac2a))n=1(6n2+5n+1)=ψ(12)ψ(13)+ψ(23)ψ(12)=πcot(π3)=π3
Commented by mnjuly1970 last updated on 19/Apr/21
 thank you mr Payan...
thankyoumrPayanthankyoumrPayan
Answered by mnjuly1970 last updated on 19/Apr/21

Leave a Reply

Your email address will not be published. Required fields are marked *