Menu Close

Nice-Calculus-I-Evaluate-I-0-ln-2-x-e-x-2e-x-2-dx-




Question Number 141560 by mnjuly1970 last updated on 20/May/21
                ........Nice ....Calculus(I)......       Evaluate::         I:=∫_0 ^( ln(2)) (x/(e^x +2e^(−x) −2))dx=?      ......
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:……..{Nice}\:….{Calculus}\left({I}\right)…… \\ $$$$\:\:\:\:\:{Evaluate}::\:\: \\ $$$$\:\:\:\:\:\mathrm{I}:=\int_{\mathrm{0}} ^{\:{ln}\left(\mathrm{2}\right)} \frac{{x}}{{e}^{{x}} +\mathrm{2}{e}^{−{x}} −\mathrm{2}}{dx}=? \\ $$$$\:\:\:\:…… \\ $$
Answered by mindispower last updated on 20/May/21
=∫_0 ^(ln(2)) ((xe^x )/((e^x −1)^2 +1))dx  u=e^x −1  =∫_0 ^1 ((ln(1+u))/(u^2 +1))du,u=tg(t)  =∫_0 ^(π/4) ln(1+tg(t))  =∫_0 ^(π/4) ln((((√2)sin((π/4)+u))/(cos(u))))du  =(π/4)ln((√2))+∫_0 ^(π/4) ln(sin((π/4)+u))du−∫_0 ^(π/4) ln(cos(u))du  ∫_0 ^(π/4) ln(sin(u+(π/4)))du=∫_0 ^(π/4) ln(cos(u))du∣u→(π/4)−u  ⇔∫_0 ^(ln(2)) (x/(e^x +2e^(−x) −2))dx=(π/4)ln((√2))=((πln(2))/8)
$$=\int_{\mathrm{0}} ^{{ln}\left(\mathrm{2}\right)} \frac{{xe}^{{x}} }{\left({e}^{{x}} −\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$$${u}={e}^{{x}} −\mathrm{1} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{u}\right)}{{u}^{\mathrm{2}} +\mathrm{1}}{du},{u}={tg}\left({t}\right) \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\mathrm{1}+{tg}\left({t}\right)\right) \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left(\frac{\sqrt{\mathrm{2}}{sin}\left(\frac{\pi}{\mathrm{4}}+{u}\right)}{{cos}\left({u}\right)}\right){du} \\ $$$$=\frac{\pi}{\mathrm{4}}{ln}\left(\sqrt{\mathrm{2}}\right)+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({sin}\left(\frac{\pi}{\mathrm{4}}+{u}\right)\right){du}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\left({u}\right)\right){du} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({sin}\left({u}+\frac{\pi}{\mathrm{4}}\right)\right){du}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {ln}\left({cos}\left({u}\right)\right){du}\mid{u}\rightarrow\frac{\pi}{\mathrm{4}}−{u} \\ $$$$\Leftrightarrow\int_{\mathrm{0}} ^{{ln}\left(\mathrm{2}\right)} \frac{{x}}{{e}^{{x}} +\mathrm{2}{e}^{−{x}} −\mathrm{2}}{dx}=\frac{\pi}{\mathrm{4}}{ln}\left(\sqrt{\mathrm{2}}\right)=\frac{\pi{ln}\left(\mathrm{2}\right)}{\mathrm{8}} \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 20/May/21
    grateful sir power...
$$\:\:\:\:{grateful}\:{sir}\:{power}… \\ $$
Commented by mindispower last updated on 20/May/21
pleasur sir
$${pleasur}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *