Menu Close

Nice-Calculus-I-Evaluate-I-0-ln-2-x-e-x-2e-x-2-dx-




Question Number 141560 by mnjuly1970 last updated on 20/May/21
                ........Nice ....Calculus(I)......       Evaluate::         I:=∫_0 ^( ln(2)) (x/(e^x +2e^(−x) −2))dx=?      ......
..Nice.Calculus(I)Evaluate::I:=0ln(2)xex+2ex2dx=?
Answered by mindispower last updated on 20/May/21
=∫_0 ^(ln(2)) ((xe^x )/((e^x −1)^2 +1))dx  u=e^x −1  =∫_0 ^1 ((ln(1+u))/(u^2 +1))du,u=tg(t)  =∫_0 ^(π/4) ln(1+tg(t))  =∫_0 ^(π/4) ln((((√2)sin((π/4)+u))/(cos(u))))du  =(π/4)ln((√2))+∫_0 ^(π/4) ln(sin((π/4)+u))du−∫_0 ^(π/4) ln(cos(u))du  ∫_0 ^(π/4) ln(sin(u+(π/4)))du=∫_0 ^(π/4) ln(cos(u))du∣u→(π/4)−u  ⇔∫_0 ^(ln(2)) (x/(e^x +2e^(−x) −2))dx=(π/4)ln((√2))=((πln(2))/8)
=0ln(2)xex(ex1)2+1dxu=ex1=01ln(1+u)u2+1du,u=tg(t)=0π4ln(1+tg(t))=0π4ln(2sin(π4+u)cos(u))du=π4ln(2)+0π4ln(sin(π4+u))du0π4ln(cos(u))du0π4ln(sin(u+π4))du=0π4ln(cos(u))duuπ4u0ln(2)xex+2ex2dx=π4ln(2)=πln(2)8
Commented by mnjuly1970 last updated on 20/May/21
    grateful sir power...
gratefulsirpower
Commented by mindispower last updated on 20/May/21
pleasur sir
pleasursir

Leave a Reply

Your email address will not be published. Required fields are marked *