Menu Close

nice-calculus-I-lim-x-pi-4-tan-x-tan-2x-




Question Number 140046 by mnjuly1970 last updated on 03/May/21
          ........... nice .......calculus(I) ........                      Θ :=lim_( x→ (π/4))  ( tan(x) )^( tan(2x))  =?                          ...............................
..nice.calculus(I)..Θ:=limxπ4(tan(x))tan(2x)=?.
Commented by mnjuly1970 last updated on 03/May/21
thanks alot...
thanksalot
Answered by Dwaipayan Shikari last updated on 03/May/21
lim_(z→0) tan((π/2)+2z)log(tan((π/4)+z))=log(y)  −cot(2z)log(((1+tanz)/(1−tanz)))=log(y)  ∼−cot(2z)log(1+z)+cot(2z)log(1−z)=log(y)  ≈((−1)/(2z))z+((−z)/(2z))=log(y)⇒log(y)=−1⇒y=(1/e)
limz0tan(π2+2z)log(tan(π4+z))=log(y)cot(2z)log(1+tanz1tanz)=log(y)cot(2z)log(1+z)+cot(2z)log(1z)=log(y)12zz+z2z=log(y)log(y)=1y=1e
Answered by mnjuly1970 last updated on 04/May/21
      solution.....         tan(x):=y ⇒ {_(y→1) ^(x→(π/4))          Θ:=lim_(y→1) (1−(1−y))^((2y)/((1−y)(1+y)))        :=^(1−y=t) lim_(t→0) (1−t)^((2(1−t))/(t(2−t))) =lim_(t→0) {(1−t)^(2/t) }^((1−t)/(2−t))         :=(e^(−2) )^(1/2) =e^(−1) =(1/e) ......✓✓                  .........Θ :=(1/e) ........
solution..tan(x):=y{y1xπ4Θ:=limy1(1(1y))2y(1y)(1+y):=1y=tlimt0(1t)2(1t)t(2t)=limt0{(1t)2t}1t2t:=(e2)12=e1=1eΘ:=1e..

Leave a Reply

Your email address will not be published. Required fields are marked *