Menu Close

nice-calculus-if-a-b-c-0-and-acos-2-x-bsin-2-x-c-then-prove-that-a-cos-2-x-b-sin-2-x-c-




Question Number 133443 by mnjuly1970 last updated on 22/Feb/21
                 ......nice      calculus.......    if  a,b,c ≥0      and ::    acos^2 (x)+bsin^2 (x)≤c      then  prove that::         (√a) cos^2 (x)+(√b) sin^2 (x)≤(√c)                        .............
nicecalculus.ifa,b,c0and::acos2(x)+bsin2(x)cthenprovethat::acos2(x)+bsin2(x)c.
Answered by mnjuly1970 last updated on 22/Feb/21
  u_1 ^→ =((√a) cos(x),(√b) sin(x))∈R^2      u_2 ^→ =(cos(x),sin(x))∈R^2       ∣u_1 ^→ .u_2 ^→ ∣≤_(schwartz) ^(cauchy) ∣u_1 ^→ ∣∣u_2 ^→ ∣      ∣(√a) cos^2 (x)+(√b) sin^2 (x)∣≤(√(acos^2 (x)+bsin^2 (x))) .(√([cos^2 (x)+sin^2 (x)]=1))     ∣(√a) cos^2 (x)+(√b) sin^2 (x)∣≤(√c)                   .....
u1=(acos(x),bsin(x))R2u2=(cos(x),sin(x))R2u1.u2cauchyschwartzu1∣∣u2acos2(x)+bsin2(x)∣⩽acos2(x)+bsin2(x).[cos2(x)+sin2(x)]=1acos2(x)+bsin2(x)∣⩽c..

Leave a Reply

Your email address will not be published. Required fields are marked *