Menu Close

nice-calculus-If-lim-x-0-tan-x-x-1-prove-that-lim-1-x-1-x-1-tan-x-1-3-




Question Number 141685 by mnjuly1970 last updated on 22/May/21
                    ......nice ... ... ... calculus.....    If  lim_(x→0) ((tan(x))/x) = 1 , prove that:          lim(1/x)((1/x)−(1/(tan(x))))=(1/3)
$$\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:……{nice}\:…\:…\:…\:{calculus}….. \\ $$$$\:\:\mathrm{I}{f}\:\:{lim}_{{x}\rightarrow\mathrm{0}} \frac{{tan}\left({x}\right)}{{x}}\:=\:\mathrm{1}\:,\:{prove}\:{that}: \\ $$$$\:\:\:\:\:\:\:\:{lim}\frac{\mathrm{1}}{{x}}\left(\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{tan}\left({x}\right)}\right)=\frac{\mathrm{1}}{\mathrm{3}} \\ $$
Answered by iloveisrael last updated on 22/May/21
 lim_(x→0)  ((tan x−x)/(x^2  tan x)) =   lim_(x→0)  (((x+(1/3)x^3 )−x)/(x^2 (x+(1/3)x^3 ))) =   lim_(x→0)  (((1/3)x^3 )/(x^3 (1+(1/3)x^2 ))) = (1/3)
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:{x}−{x}}{{x}^{\mathrm{2}} \:\mathrm{tan}\:{x}}\:= \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\cancel{{x}}+\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} \right)−\cancel{{x}}}{{x}^{\mathrm{2}} \left({x}+\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} \right)}\:= \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} }{{x}^{\mathrm{3}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{2}} \right)}\:=\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$
Commented by greg_ed last updated on 23/May/21
true!
$$\mathrm{true}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *