Menu Close

nice-calculus-n-1-n-2-n-4-n-




Question Number 138026 by mnjuly1970 last updated on 09/Apr/21
             .........nice  ... ... ... calculus...........             Θ= Σ_ ^(n=1)  ^∞ ((n^2 /(n!.4^n ))) =??
$$\:\:\:\:\:\:\:\:\:\:\:\:\:………{nice}\:\:…\:…\:…\:{calculus}……….. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\Theta=\:\underset{\overset{{n}=\mathrm{1}} {\:}} {\overset{\infty} {\sum}}\left(\frac{{n}^{\mathrm{2}} }{{n}!.\mathrm{4}^{{n}} }\right)\:=?? \\ $$
Answered by Dwaipayan Shikari last updated on 09/Apr/21
Σ_(n=1) ^∞ (x^n /(n!))=e^x −1  Σ_(n=1) ^∞ ((nx^n )/(n!))=xe^x ⇒Σ_(n=1) ^∞ ((n^2 x^n )/(n!))=x^2 e^x +xe^x   x=(1/4)⇒ Σ_(n=1) ^∞ (n^2 /(n!4^n ))=(5/(16))e^(1/4)
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}!}={e}^{{x}} −\mathrm{1} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{nx}^{{n}} }{{n}!}={xe}^{{x}} \Rightarrow\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} {x}^{{n}} }{{n}!}={x}^{\mathrm{2}} {e}^{{x}} +{xe}^{{x}} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{4}}\Rightarrow\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} }{{n}!\mathrm{4}^{{n}} }=\frac{\mathrm{5}}{\mathrm{16}}{e}^{\mathrm{1}/\mathrm{4}} \\ $$
Commented by mnjuly1970 last updated on 09/Apr/21
   thanks alot ....
$$\:\:\:{thanks}\:{alot}\:…. \\ $$
Answered by mathmax by abdo last updated on 09/Apr/21
let f(x)=Σ_(n=1) ^∞  (x^n /(n!))  =e^x  ⇒f^′ (x)=Σ_(n=1) ^∞  ((nx^(n−1) )/(n!))   ⇒xf^′ (x)=Σ_(n=1) ^∞  ((nx^n )/(n!)) ⇒(xf^′ (x))^′  =Σ((n^2 x^(n−1) )/(n!)) ⇒  x(f^′ (x)+xf^((2)) (x))=Σ ((n^2 x^n )/(n!)) ⇒x(e^x  +xe^x ) =Σ(...) ⇒  Σ  ((n^2 x^n )/(n!))=(x^2  +x)e^x     x=(1/4) ⇒Σ_(n=1) ^∞  (n^2 /(n!4^n )) =((1/4^2 )+(1/4))e^(1/4)   =(5/(16))e^(1/4)
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{n}!}\:\:=\mathrm{e}^{\mathrm{x}} \:\Rightarrow\mathrm{f}^{'} \left(\mathrm{x}\right)=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{nx}^{\mathrm{n}−\mathrm{1}} }{\mathrm{n}!}\: \\ $$$$\Rightarrow\mathrm{xf}^{'} \left(\mathrm{x}\right)=\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{nx}^{\mathrm{n}} }{\mathrm{n}!}\:\Rightarrow\left(\mathrm{xf}^{'} \left(\mathrm{x}\right)\right)^{'} \:=\Sigma\frac{\mathrm{n}^{\mathrm{2}} \mathrm{x}^{\mathrm{n}−\mathrm{1}} }{\mathrm{n}!}\:\Rightarrow \\ $$$$\mathrm{x}\left(\mathrm{f}^{'} \left(\mathrm{x}\right)+\mathrm{xf}^{\left(\mathrm{2}\right)} \left(\mathrm{x}\right)\right)=\Sigma\:\frac{\mathrm{n}^{\mathrm{2}} \mathrm{x}^{\mathrm{n}} }{\mathrm{n}!}\:\Rightarrow\mathrm{x}\left(\mathrm{e}^{\mathrm{x}} \:+\mathrm{xe}^{\mathrm{x}} \right)\:=\Sigma\left(…\right)\:\Rightarrow \\ $$$$\Sigma\:\:\frac{\mathrm{n}^{\mathrm{2}} \mathrm{x}^{\mathrm{n}} }{\mathrm{n}!}=\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}\right)\mathrm{e}^{\mathrm{x}} \:\:\:\:\mathrm{x}=\frac{\mathrm{1}}{\mathrm{4}}\:\Rightarrow\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{n}^{\mathrm{2}} }{\mathrm{n}!\mathrm{4}^{\mathrm{n}} }\:=\left(\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}}\right)\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$=\frac{\mathrm{5}}{\mathrm{16}}\mathrm{e}^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$
Commented by mnjuly1970 last updated on 09/Apr/21
grateful sir
$${grateful}\:{sir} \\ $$
Answered by Ñï= last updated on 09/Apr/21
Σ_(n=1) ^∞ (n^2 /(n!4^n ))=(1/4)Σ_(n=0) ^∞ ((n+1)/(n!4^n ))=(1/4)(xD+1)e^x ∣_(x=(1/4))   =(1/4)(x+1)e^x ∣_(x=(1/4)) =(5/(16))e^(1/4)
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} }{{n}!\mathrm{4}^{{n}} }=\frac{\mathrm{1}}{\mathrm{4}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}+\mathrm{1}}{{n}!\mathrm{4}^{{n}} }=\frac{\mathrm{1}}{\mathrm{4}}\left({xD}+\mathrm{1}\right){e}^{{x}} \mid_{{x}=\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left({x}+\mathrm{1}\right){e}^{{x}} \mid_{{x}=\frac{\mathrm{1}}{\mathrm{4}}} =\frac{\mathrm{5}}{\mathrm{16}}{e}^{\mathrm{1}/\mathrm{4}} \\ $$
Commented by mnjuly1970 last updated on 09/Apr/21
 tvhanks alot..
$$\:{tvhanks}\:{alot}.. \\ $$
Answered by mnjuly1970 last updated on 09/Apr/21

Leave a Reply

Your email address will not be published. Required fields are marked *