Menu Close

nice-calculus-n-1-n-2-n-4-n-




Question Number 138026 by mnjuly1970 last updated on 09/Apr/21
             .........nice  ... ... ... calculus...........             Θ= Σ_ ^(n=1)  ^∞ ((n^2 /(n!.4^n ))) =??
nicecalculus..Θ=n=1(n2n!.4n)=??
Answered by Dwaipayan Shikari last updated on 09/Apr/21
Σ_(n=1) ^∞ (x^n /(n!))=e^x −1  Σ_(n=1) ^∞ ((nx^n )/(n!))=xe^x ⇒Σ_(n=1) ^∞ ((n^2 x^n )/(n!))=x^2 e^x +xe^x   x=(1/4)⇒ Σ_(n=1) ^∞ (n^2 /(n!4^n ))=(5/(16))e^(1/4)
n=1xnn!=ex1n=1nxnn!=xexn=1n2xnn!=x2ex+xexx=14n=1n2n!4n=516e1/4
Commented by mnjuly1970 last updated on 09/Apr/21
   thanks alot ....
thanksalot.
Answered by mathmax by abdo last updated on 09/Apr/21
let f(x)=Σ_(n=1) ^∞  (x^n /(n!))  =e^x  ⇒f^′ (x)=Σ_(n=1) ^∞  ((nx^(n−1) )/(n!))   ⇒xf^′ (x)=Σ_(n=1) ^∞  ((nx^n )/(n!)) ⇒(xf^′ (x))^′  =Σ((n^2 x^(n−1) )/(n!)) ⇒  x(f^′ (x)+xf^((2)) (x))=Σ ((n^2 x^n )/(n!)) ⇒x(e^x  +xe^x ) =Σ(...) ⇒  Σ  ((n^2 x^n )/(n!))=(x^2  +x)e^x     x=(1/4) ⇒Σ_(n=1) ^∞  (n^2 /(n!4^n )) =((1/4^2 )+(1/4))e^(1/4)   =(5/(16))e^(1/4)
letf(x)=n=1xnn!=exf(x)=n=1nxn1n!xf(x)=n=1nxnn!(xf(x))=Σn2xn1n!x(f(x)+xf(2)(x))=Σn2xnn!x(ex+xex)=Σ()Σn2xnn!=(x2+x)exx=14n=1n2n!4n=(142+14)e14=516e14
Commented by mnjuly1970 last updated on 09/Apr/21
grateful sir
gratefulsir
Answered by Ñï= last updated on 09/Apr/21
Σ_(n=1) ^∞ (n^2 /(n!4^n ))=(1/4)Σ_(n=0) ^∞ ((n+1)/(n!4^n ))=(1/4)(xD+1)e^x ∣_(x=(1/4))   =(1/4)(x+1)e^x ∣_(x=(1/4)) =(5/(16))e^(1/4)
n=1n2n!4n=14n=0n+1n!4n=14(xD+1)exx=14=14(x+1)exx=14=516e1/4
Commented by mnjuly1970 last updated on 09/Apr/21
 tvhanks alot..
tvhanksalot..
Answered by mnjuly1970 last updated on 09/Apr/21

Leave a Reply

Your email address will not be published. Required fields are marked *