Question Number 136497 by mnjuly1970 last updated on 22/Mar/21

Commented by Dwaipayan Shikari last updated on 22/Mar/21

Commented by mnjuly1970 last updated on 22/Mar/21

Answered by mindispower last updated on 22/Mar/21
![t=−ln(x) =∫_0 ^∞ (e^(−t) /(1+t^2 ))dt=∫_0 ^∞ (((t+i)−(t−i))/(2i(t+i)(t−i)))e^(−t) =(1/(2i))(∫_0 ^∞ (e^(−t) /(t−i))dt−∫_0 ^∞ (e^(−t) /(t+i))) =Im ∫_0 ^∞ (e^(−t) /(t−i))dt let z=it =Im ∫_0 ^(i∞) (e^(iz) /(i(t+1))).(dz/i)=Im(−∫_0 ^(i∞) (e^(iz) /(t+1))dz)...2 let C_R =[0,R]∪(Re^(iθ) ,θ∈[0,(π/2)])_D ∪[iR,0] ∫_C_R (e^(iz) /(z+1))dz=0..1,z→(e^(iz) /(z+1)) holomorphic without pols over C_R ∫_D (e^(iz) /(z+1))=0⇒..2 (1)&(2)⇒ ∫_0 ^∞ (e^(iz) /(z+1))dz=−∫_0 ^(i∞) (e^(iz) /(z+1))dz we get Im ∫_0 ^∞ (e^(iz) /(z+1))dz=∫_0 ^∞ ((sin(z))/(z+1))dz](https://www.tinkutara.com/question/Q136508.png)
Commented by mnjuly1970 last updated on 22/Mar/21

Commented by mindispower last updated on 22/Mar/21
