Menu Close

nice-calculus-prove-0-1-1-1-ln-2-x-dx-0-sin-x-1-x-dx-




Question Number 136497 by mnjuly1970 last updated on 22/Mar/21
                 ......nice    calculus.....      prove::           ∫_0 ^( 1) (1/(1+ln^2 (x)))dx=∫_(0 ) ^( ∞) ((sin(x))/(1+x))dx
nicecalculus..prove::0111+ln2(x)dx=0sin(x)1+xdx
Commented by Dwaipayan Shikari last updated on 22/Mar/21
∫_0 ^∞ ((sin(x))/(1+x))dx  =∫_0 ^∞ ∫_0 ^∞ e^(−(x+1)t) sin(x)dtdx  =(1/(2i))∫_0 ^∞ ∫_0 ^∞ e^(−t) e^(−(t−i)x) −e^(−t) e^(−(t+i)x) dxdt  =(1/(2i))∫_0 ^∞ (e^(−t) /(t−i))−(e^(−t) /(t+i))dt  =∫_0 ^∞ (e^(−t) /(t^2 +1))dt         −t=log(u)⇒1=−(1/u).(du/dt)  =∫_0 ^1 (1/(1+log^2 (u)))du
0sin(x)1+xdx=00e(x+1)tsin(x)dtdx=12i00ete(ti)xete(t+i)xdxdt=12i0ettiett+idt=0ett2+1dtt=log(u)1=1u.dudt=0111+log2(u)du
Commented by mnjuly1970 last updated on 22/Mar/21
 grateful mr payan...
gratefulmrpayan
Answered by mindispower last updated on 22/Mar/21
t=−ln(x)  =∫_0 ^∞ (e^(−t) /(1+t^2 ))dt=∫_0 ^∞ (((t+i)−(t−i))/(2i(t+i)(t−i)))e^(−t)   =(1/(2i))(∫_0 ^∞ (e^(−t) /(t−i))dt−∫_0 ^∞ (e^(−t) /(t+i)))  =Im ∫_0 ^∞ (e^(−t) /(t−i))dt  let z=it  =Im ∫_0 ^(i∞) (e^(iz) /(i(t+1))).(dz/i)=Im(−∫_0 ^(i∞) (e^(iz) /(t+1))dz)...2  let C_R =[0,R]∪(Re^(iθ) ,θ∈[0,(π/2)])_D ∪[iR,0]  ∫_C_R  (e^(iz) /(z+1))dz=0..1,z→(e^(iz) /(z+1)) holomorphic without pols  over C_R   ∫_D (e^(iz) /(z+1))=0⇒..2  (1)&(2)⇒  ∫_0 ^∞ (e^(iz) /(z+1))dz=−∫_0 ^(i∞) (e^(iz) /(z+1))dz  we get Im ∫_0 ^∞ (e^(iz) /(z+1))dz=∫_0 ^∞ ((sin(z))/(z+1))dz
t=ln(x)=0et1+t2dt=0(t+i)(ti)2i(t+i)(ti)et=12i(0ettidt0ett+i)=Im0ettidtletz=it=Im0ieizi(t+1).dzi=Im(0ieizt+1dz)2letCR=[0,R](Reiθ,θ[0,π2])D[iR,0]CReizz+1dz=0..1,zeizz+1holomorphicwithoutpolsoverCRDeizz+1=0..2(1)&(2)0eizz+1dz=0ieizz+1dzwegetIm0eizz+1dz=0sin(z)z+1dz
Commented by mnjuly1970 last updated on 22/Mar/21
thank you so much mr power...
thankyousomuchmrpower
Commented by mindispower last updated on 22/Mar/21
pleasur
pleasur

Leave a Reply

Your email address will not be published. Required fields are marked *