Menu Close

nice-calculus-prove-1-0-pi-2-tan-1-tan-x-tan-x-dx-pi-2-log-2-2-2-pi-pi-e-sin-x-cos-x-cos-sin-x-e-x-e-sin-x-dx-pi-




Question Number 136295 by mnjuly1970 last updated on 20/Mar/21
      ....nice  calculus...  prove ::  1 ::𝛗=∫_0 ^( (π/2)) ((tan^(−1) ((√(tan(x))) ))/(tan(x)))dx=(π/2)log(2+(√2) )  2::Ω=∫_(−π) ^( π) ((e^((sin(x)+cos(x))) cos(sin(x)))/(e^x +e^(sin(x)) ))dx=π
.nicecalculusprove::1::ϕ=0π2tan1(tan(x))tan(x)dx=π2log(2+2)2::Ω=ππe(sin(x)+cos(x))cos(sin(x))ex+esin(x)dx=π
Answered by mindispower last updated on 20/Mar/21
Ω=Re∫_(−π) ^π (e^(cos(x)+sin(x)(+isin(x)) /(e^x +sin(x)))dx=Re(W)  W=∫_(−π) ^π (e^(cos(x)+isin(x)) /(e^(x−sin(x)) +1))dx,z=cos(x)+isin(x),z^− ,conj(z)  by semetry  x→−x  2w=∫_(−π) ^π (e^z^−  /(e^(−x+sin(x)) +1))+(e^z /(e^(x−sin(x)) +1))dx  =∫_(−π) ^π ((e^z^−  (e^(x−sin(x)) )+e^z )/(e^(x−sin(x)) +1))dx  =∫_(−π) ^π e^z^−  +∫_(−π) ^π ((e^z −e^z^−  )/(e^(x−sin(x)) +1))dx  2w=A+B  B∈{ia,a∈R}  Ω=Re(w)=(1/2)Re∫_(−π) ^π e^z^−  dx,x→−x,sin(−x)=−sin(x)⇒  =(1/2)Re∫_(−π) ^π e^z dx=(1/2)ReΣ_(n≥0) ∫_(−π) ^π (z^n /(n!))dx  z=e^(ix)   ⇔Ω=(1/2).ReΣ_(n≥0) ∫_(−π) ^π (e^(inx) /(n!))dx=(1/2)∫_(−π) ^π dx_(=C) +Σ_(n≥1) [_(−π) ^π (e^(inx) /(n!.n))]_(=D)   x→e^(inx) is 2π periodic⇒D=0  Ω=(1/2).2π+0=π  ∫_(−π) ^π ((e^(cos(x)+sin(x)) cos(sin(x))/(e^x +e^(sin(x)) ))dx=𝛑
Ω=Reππecos(x)+sin(x)(+isin(x)ex+sin(x)dx=Re(W)W=ππecos(x)+isin(x)exsin(x)+1dx,z=cos(x)+isin(x),z,conj(z)bysemetryxx2w=ππezex+sin(x)+1+ezexsin(x)+1dx=ππez(exsin(x))+ezexsin(x)+1dx=ππez+ππezezexsin(x)+1dx2w=A+BB{ia,aR}Ω=Re(w)=12Reππezdx,xx,sin(x)=sin(x)=12Reππezdx=12Ren0ππznn!dxz=eixMissing \left or extra \rightxeinxis2πperiodicD=0Ω=12.2π+0=πππecos(x)+sin(x)cos(sin(x)ex+esin(x)dx=π
Commented by mnjuly1970 last updated on 20/Mar/21
very nice solution  thanks alot...
verynicesolutionthanksalot
Commented by mindispower last updated on 20/Mar/21
thanx always pleasur
thanxalwayspleasur
Answered by Ar Brandon last updated on 20/Mar/21
𝛗=∫_0 ^(π/2) ((tan^(−1) ((√(tanx))))/(tanx))dx=_(u=tanx) ∫_0 ^∞ ((tan^(−1) ((√u)))/(u(1+u^2 )))du      =∫_0 ^∞ Σ_(n=0) ^∞ (((−1)^n u^n )/((n+1)(1+u^2 )))du=Σ_(n=0) ^∞ (((−1)^n )/(n+1))∫_0 ^∞ (u^n /((1+u^2 )))du       =_(t=u^2 ) (1/2)Σ_(n=0) ^∞ (((−1)^n )/(n+1))∫_0 ^∞ (t^((n/2)−(1/2)) /((1+t)))dt=(1/2)Σ_(n=0) ^∞ (((−1)^n )/(n+1))β((n/2)+(1/2) , (1/2)−(n/2))       =(1/2)Σ_(n=0) ^∞ (((−1)^n )/(n+1))∙(π/(cos(((πn)/2))))  😷
ϕ=0π2tan1(tanx)tanxdx=u=tanx0tan1(u)u(1+u2)du=0n=0(1)nun(n+1)(1+u2)du=n=0(1)nn+10un(1+u2)du=t=u212n=0(1)nn+10tn212(1+t)dt=12n=0(1)nn+1β(n2+12,12n2)=12n=0(1)nn+1πcos(πn2)😷
Commented by mindispower last updated on 20/Mar/21
you cant[switch Σ and ∫
youcant[switchΣand

Leave a Reply

Your email address will not be published. Required fields are marked *