Menu Close

nice-calculus-prove-n-1-2n-1-1-n-1-log-2-




Question Number 138065 by mnjuly1970 last updated on 09/Apr/21
                   ...nice ... ... ... calculus...         prove::           Ω=Σ_(n=1) ^∞ ((ζ(2n+1)−1)/(n+1)) =−γ+log(2)
nicecalculusprove::Ω=n=1ζ(2n+1)1n+1=γ+log(2)
Answered by Ñï= last updated on 09/Apr/21
Ω=Σ_(k=2) ^∞ Σ_(n=1) ^∞ (1/((n+1)k^(2n+1) ))=−Σ_(k=2) ^∞ ((1/k)+ln(1−(1/k^2 )))  =lim_(m→∞) (−H_m +1−Σ_(k=2) ^∞ (kln(k+1)+kln(k−1)−2klnk))  =lim_(m→∞) (−H_m +1+ln2+lnm−mln(1+(1/m)))  =lim_(m→∞) (−H_m +lnm+ln2+O((1/m)))  =−γ+ln2  ...... i dont understand...just copy...
Ω=k=2n=11(n+1)k2n+1=k=2(1k+ln(11k2))=limm(Hm+1k=2(kln(k+1)+kln(k1)2klnk))=limm(Hm+1+ln2+lnmmln(1+1m))=limm(Hm+lnm+ln2+O(1m))=γ+ln2idontunderstandjustcopy
Commented by mnjuly1970 last updated on 10/Apr/21
Commented by mnjuly1970 last updated on 10/Apr/21

Leave a Reply

Your email address will not be published. Required fields are marked *