nice-calculus-prove-that-0-1-Arcsin-x-Arccos-x-dx-2-pi-2- Tinku Tara June 3, 2023 Integration FacebookTweetPin Question Number 131401 by mnjuly1970 last updated on 04/Feb/21 …nicecalculus…provethat:::∫01(Arcsin(x)).(Arccos(x))dx=??2−π2 Answered by mathmax by abdo last updated on 04/Feb/21 Φ=∫01(arcsinx)(arcosx)dx⇒Φ=∫01arcsinx(π2−arcsinx)dx=π2∫01arcsinxdx−∫01arcsin2xdx∫01arcsinxdx=arcsinx=t∫0π2t.costdt=byparts[tsint]0π2−∫0π2sintdt=π2+[cost]0π2=π2−1∫01(arcsinx)2dx=arcsinx=t∫0π2t2costdt=[t2sint]0π2−2∫0π2tsintdt=π24−2{[−tcost]0π2+∫0π2costdt}=π24−2[sint]0π2=π24−2⇒Φ=π2(π2−1)−π24+2⇒Φ=2−π2 Commented by mnjuly1970 last updated on 04/Feb/21 thankyousomuchsirmax… Commented by mathmax by abdo last updated on 04/Feb/21 youarewelcomesir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 0-1-x-3-ln-x-dx-1-x-3-e-x-1-dx-Next Next post: 2x-2-3x-4-4x-3-5-dx-