Menu Close

nice-calculus-prove-that-0-1-Arcsin-x-Arccos-x-dx-2-pi-2-




Question Number 131401 by mnjuly1970 last updated on 04/Feb/21
              ...nice  calculus...     prove  that:::      ∫_0 ^( 1) (Arcsin(x)).(Arccos(x))dx=^(??) 2−(π/2)
nicecalculusprovethat:::01(Arcsin(x)).(Arccos(x))dx=??2π2
Answered by mathmax by abdo last updated on 04/Feb/21
Φ=∫_0 ^1  (arcsinx)(arcosx)dx ⇒Φ =∫_0 ^(1 ) arcsinx((π/2)−arcsinx)dx  =(π/2)∫_0 ^1  arcsinx dx −∫_0 ^1  arcsin^2 x dx  ∫_0 ^1  arcsinx dx =_(arcsinx=t)    ∫_0 ^(π/2)  t.cost dt =_(byparts)   [tsint]_0 ^(π/2) −∫_0 ^(π/2)  sint dt  =(π/2) +[cost]_0 ^(π/2)  =(π/2)−1  ∫_0 ^1  (arcsinx)^2 dx =_(arcsinx=t)   ∫_0 ^(π/2)  t^2 cost dt  =[t^2 sint]_0 ^(π/2) −2∫_0 ^(π/2)  t sint dt =(π^2 /4)−2{ [−tcost]_0 ^(π/2) +∫_0 ^(π/2) cost dt}  =(π^2 /4)−2[sint]_0 ^(π/2)  =(π^2 /4)−2 ⇒Φ=(π/2)((π/2)−1)−(π^2 /4)+2 ⇒  Φ=2−(π/2)
Φ=01(arcsinx)(arcosx)dxΦ=01arcsinx(π2arcsinx)dx=π201arcsinxdx01arcsin2xdx01arcsinxdx=arcsinx=t0π2t.costdt=byparts[tsint]0π20π2sintdt=π2+[cost]0π2=π2101(arcsinx)2dx=arcsinx=t0π2t2costdt=[t2sint]0π220π2tsintdt=π242{[tcost]0π2+0π2costdt}=π242[sint]0π2=π242Φ=π2(π21)π24+2Φ=2π2
Commented by mnjuly1970 last updated on 04/Feb/21
thank you so much  sir max...
thankyousomuchsirmax
Commented by mathmax by abdo last updated on 04/Feb/21
you are welcome sir.
youarewelcomesir.