Menu Close

nice-calculus-prove-that-0-1-ln-1-x-1-1-x-dx-4-1-2-




Question Number 135821 by mnjuly1970 last updated on 16/Mar/21
             ....nice   .....   calculus....       prove that ::      𝛗=∫_0 ^( 1) (((ln(1−x))/(1−(√(1−x)))))dx=4(1−ζ(2))
.nice..calculus.provethat::ϕ=01(ln(1x)11x)dx=4(1ζ(2))
Answered by mathmax by abdo last updated on 16/Mar/21
Φ=∫_0 ^1  ((log(1−x))/(1−(√(1−x))))dx  we do the changement(√(1−x))=t ⇒1−x=t^2  ⇒x=1−t^2   Φ =−∫_0 ^1 ((log(1−1+t^2 ))/(1−t))(−2t)dt =4∫_0 ^1  ((tlog(t))/(1−t))dt  =4∫_0 ^1  tlogtΣ_(n=0) ^∞  t^n  dt =4Σ_(n=0) ^∞  ∫_0 ^1  t^(n+1) logt dt =4Σ U_n   U_n =∫_0 ^1  t^(n+1) logt dt =[(t^(n+2) /(n+2))logt]_0 ^1 −(1/(n+2))∫_0 ^1  t^(n+1)  dt  =−(1/((n+2)^2 )) ⇒Φ =−4 Σ_(n=0) ^∞  (1/((n+2)^2 ))  =−4Σ_(n=2) ^∞  (1/n^2 ) =−4{Σ_(n=1) ^∞  (1/n^2 )−1}  =4−4.(π^2 /6) =4−((2π^2 )/3)
Φ=01log(1x)11xdxwedothechangement1x=t1x=t2x=1t2Φ=01log(11+t2)1t(2t)dt=401tlog(t)1tdt=401tlogtn=0tndt=4n=001tn+1logtdt=4ΣUnUn=01tn+1logtdt=[tn+2n+2logt]011n+201tn+1dt=1(n+2)2Φ=4n=01(n+2)2=4n=21n2=4{n=11n21}=44.π26=42π23
Answered by Dwaipayan Shikari last updated on 16/Mar/21
∫_0 ^1 ((log(1−x))/(1−(√(1−x))))dx=∫_0 ^1 ((log(x))/(1−(√x)))dx  =∫_0 ^1 ((4tlog(t))/(1−t))dt  =4Φ′(2)=4(1−(π^2 /6))  Φ(α)=∫_0 ^1 ((1−x^(α−1) )/(1−x))dx=−γ+ψ(α)  Φ′(α)=−∫_0 ^1 ((x^(α−1) log(x))/(1−x))dx=ψ^1 (α)⇒∫_0 ^1 ((xlog(x))/(1−x))=−ψ^1 (2)  Φ′(2)=−Σ_(n=1) ^∞ (1/((n+1)^2 ))=−((π^2 /6)−1)
01log(1x)11xdx=01log(x)1xdx=014tlog(t)1tdt=4Φ(2)=4(1π26)Φ(α)=011xα11xdx=γ+ψ(α)Φ(α)=01xα1log(x)1xdx=ψ1(α)01xlog(x)1x=ψ1(2)Φ(2)=n=11(n+1)2=(π261)
Commented by mnjuly1970 last updated on 16/Mar/21
thanks alot mr payan...
thanksalotmrpayan
Answered by Ñï= last updated on 16/Mar/21
∫_0 ^1 ((ln(1−x))/(1−(√(1−x))))dx=∫_0 ^1 ((lnx)/(1−(√x)))dx=∫_0 ^1 (((1−(√x))lnx)/(1−x))dx  =∫_0 ^1 ((lnx)/(1−x))dx−∫_0 ^1 (((√x)lnx)/(1−x))dx  =∫_0 ^1 ((lnx)/(1−x))dx−∫_0 ^1 ((4x^2 lnx)/(1−x^2 ))dx      ((√x)→x)  =−Li_2 (1)−4∫_0 ^1 (1−(1/(1−x^2 )))lnxdx  =−Li_2 (1)−4∫_0 ^1 lnxdx+4∫_0 ^1 ((lnx)/((1−x)(1+x)))dx  =−Li_2 (1)+4+2∫_0 ^1 ((1/(1−x))+(1/(1+x)))lnxdx  =−Li_2 (1)+4−2Li_2 (1)+2Li_2 (−1)  =−4Li_2 (1)+4  =4(1−ζ(2))
01ln(1x)11xdx=01lnx1xdx=01(1x)lnx1xdx=01lnx1xdx01xlnx1xdx=01lnx1xdx014x2lnx1x2dx(xx)=Li2(1)401(111x2)lnxdx=Li2(1)401lnxdx+401lnx(1x)(1+x)dx=Li2(1)+4+201(11x+11+x)lnxdx=Li2(1)+42Li2(1)+2Li2(1)=4Li2(1)+4=4(1ζ(2))
Commented by mnjuly1970 last updated on 16/Mar/21
  thank you do much...
thankyoudomuch
Answered by mnjuly1970 last updated on 16/Mar/21
     solution:    y^2 =1−x    𝛗=2∫_0 ^( 1) ((ln((√(1−x)) ))/(1−(√(1−x))))dx      𝛗=4∫_0 ^( 1) ((yln(y))/(1−y))dy         =−4∫_0 ^( 1) ln(y)dy−4li_2 (y)          =4−4ζ(2)=4(1−ζ(2))...       we know that:        1: li_2 (x)=−∫_0 ^( x) ((ln(1−z))/z)dz=Σ_(n=1) ^∞ (x^n /n^2 )        1^∗ : li_2 (1)=ζ(2)        1^(∗∗) :∫_0 ^( 1) ln(t)dt=−1
solution:y2=1xϕ=201ln(1x)11xdxϕ=401yln(y)1ydy=401ln(y)dy4li2(y)=44ζ(2)=4(1ζ(2))weknowthat:1:li2(x)=0xln(1z)zdz=n=1xnn21:li2(1)=ζ(2)1:01ln(t)dt=1

Leave a Reply

Your email address will not be published. Required fields are marked *