Question Number 135821 by mnjuly1970 last updated on 16/Mar/21
$$\:\:\:\:\:\:\:\:\:\:\:\:\:….{nice}\:\:\:…..\:\:\:{calculus}….\: \\ $$$$\:\:\:\:{prove}\:{that}\::: \\ $$$$\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{ln}\left(\mathrm{1}β{x}\right)}{\mathrm{1}β\sqrt{\mathrm{1}β{x}}}\right){dx}=\mathrm{4}\left(\mathrm{1}β\zeta\left(\mathrm{2}\right)\right) \\ $$$$ \\ $$
Answered by mathmax by abdo last updated on 16/Mar/21
$$\Phi=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{log}\left(\mathrm{1}β\mathrm{x}\right)}{\mathrm{1}β\sqrt{\mathrm{1}β\mathrm{x}}}\mathrm{dx}\:\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\sqrt{\mathrm{1}β\mathrm{x}}=\mathrm{t}\:\Rightarrow\mathrm{1}β\mathrm{x}=\mathrm{t}^{\mathrm{2}} \:\Rightarrow\mathrm{x}=\mathrm{1}β\mathrm{t}^{\mathrm{2}} \\ $$$$\Phi\:=β\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{log}\left(\mathrm{1}β\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}{\mathrm{1}β\mathrm{t}}\left(β\mathrm{2t}\right)\mathrm{dt}\:=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{tlog}\left(\mathrm{t}\right)}{\mathrm{1}β\mathrm{t}}\mathrm{dt} \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{tlogt}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\mathrm{t}^{\mathrm{n}} \:\mathrm{dt}\:=\mathrm{4}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{t}^{\mathrm{n}+\mathrm{1}} \mathrm{logt}\:\mathrm{dt}\:=\mathrm{4}\Sigma\:\mathrm{U}_{\mathrm{n}} \\ $$$$\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{t}^{\mathrm{n}+\mathrm{1}} \mathrm{logt}\:\mathrm{dt}\:=\left[\frac{\mathrm{t}^{\mathrm{n}+\mathrm{2}} }{\mathrm{n}+\mathrm{2}}\mathrm{logt}\right]_{\mathrm{0}} ^{\mathrm{1}} β\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{t}^{\mathrm{n}+\mathrm{1}} \:\mathrm{dt} \\ $$$$=β\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{2}\right)^{\mathrm{2}} }\:\Rightarrow\Phi\:=β\mathrm{4}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$=β\mathrm{4}\sum_{\mathrm{n}=\mathrm{2}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\:=β\mathrm{4}\left\{\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }β\mathrm{1}\right\} \\ $$$$=\mathrm{4}β\mathrm{4}.\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:=\mathrm{4}β\frac{\mathrm{2}\pi^{\mathrm{2}} }{\mathrm{3}} \\ $$
Answered by Dwaipayan Shikari last updated on 16/Mar/21
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{log}\left(\mathrm{1}β{x}\right)}{\mathrm{1}β\sqrt{\mathrm{1}β{x}}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{log}\left({x}\right)}{\mathrm{1}β\sqrt{{x}}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{4}{tlog}\left({t}\right)}{\mathrm{1}β{t}}{dt} \\ $$$$=\mathrm{4}\Phi'\left(\mathrm{2}\right)=\mathrm{4}\left(\mathrm{1}β\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\right) \\ $$$$\Phi\left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}β{x}^{\alphaβ\mathrm{1}} }{\mathrm{1}β{x}}{dx}=β\gamma+\psi\left(\alpha\right) \\ $$$$\Phi'\left(\alpha\right)=β\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\alphaβ\mathrm{1}} {log}\left({x}\right)}{\mathrm{1}β{x}}{dx}=\psi^{\mathrm{1}} \left(\alpha\right)\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{xlog}\left({x}\right)}{\mathrm{1}β{x}}=β\psi^{\mathrm{1}} \left(\mathrm{2}\right) \\ $$$$\Phi'\left(\mathrm{2}\right)=β\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }=β\left(\frac{\pi^{\mathrm{2}} }{\mathrm{6}}β\mathrm{1}\right) \\ $$
Commented by mnjuly1970 last updated on 16/Mar/21
$${thanks}\:{alot}\:{mr}\:{payan}… \\ $$
Answered by ΓΓ―= last updated on 16/Mar/21
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}β{x}\right)}{\mathrm{1}β\sqrt{\mathrm{1}β{x}}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnx}}{\mathrm{1}β\sqrt{{x}}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}β\sqrt{{x}}\right){lnx}}{\mathrm{1}β{x}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnx}}{\mathrm{1}β{x}}{dx}β\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\sqrt{{x}}{lnx}}{\mathrm{1}β{x}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnx}}{\mathrm{1}β{x}}{dx}β\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{4}{x}^{\mathrm{2}} {lnx}}{\mathrm{1}β{x}^{\mathrm{2}} }{dx}\:\:\:\:\:\:\left(\sqrt{{x}}\rightarrow{x}\right) \\ $$$$=β{Li}_{\mathrm{2}} \left(\mathrm{1}\right)β\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}β\frac{\mathrm{1}}{\mathrm{1}β{x}^{\mathrm{2}} }\right){lnxdx} \\ $$$$=β{Li}_{\mathrm{2}} \left(\mathrm{1}\right)β\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} {lnxdx}+\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnx}}{\left(\mathrm{1}β{x}\right)\left(\mathrm{1}+{x}\right)}{dx} \\ $$$$=β{Li}_{\mathrm{2}} \left(\mathrm{1}\right)+\mathrm{4}+\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{1}β{x}}+\frac{\mathrm{1}}{\mathrm{1}+{x}}\right){lnxdx} \\ $$$$=β{Li}_{\mathrm{2}} \left(\mathrm{1}\right)+\mathrm{4}β\mathrm{2}{Li}_{\mathrm{2}} \left(\mathrm{1}\right)+\mathrm{2}{Li}_{\mathrm{2}} \left(β\mathrm{1}\right) \\ $$$$=β\mathrm{4}{Li}_{\mathrm{2}} \left(\mathrm{1}\right)+\mathrm{4} \\ $$$$=\mathrm{4}\left(\mathrm{1}β\zeta\left(\mathrm{2}\right)\right) \\ $$
Commented by mnjuly1970 last updated on 16/Mar/21
$$\:\:{thank}\:{you}\:{do}\:{much}… \\ $$
Answered by mnjuly1970 last updated on 16/Mar/21
$$\:\:\:\:\:{solution}: \\ $$$$\:\:{y}^{\mathrm{2}} =\mathrm{1}β{x} \\ $$$$\:\:\boldsymbol{\phi}=\mathrm{2}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\sqrt{\mathrm{1}β{x}}\:\right)}{\mathrm{1}β\sqrt{\mathrm{1}β{x}}}{dx} \\ $$$$\:\:\:\:\boldsymbol{\phi}=\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{yln}\left({y}\right)}{\mathrm{1}β{y}}{dy} \\ $$$$\:\:\:\:\:\:\:=β\mathrm{4}\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left({y}\right){dy}β\mathrm{4}{li}_{\mathrm{2}} \left({y}\right) \\ $$$$\:\:\:\:\:\:\:\:=\mathrm{4}β\mathrm{4}\zeta\left(\mathrm{2}\right)=\mathrm{4}\left(\mathrm{1}β\zeta\left(\mathrm{2}\right)\right)… \\ $$$$\:\:\:\:\:{we}\:{know}\:{that}: \\ $$$$\:\:\:\:\:\:\mathrm{1}:\:{li}_{\mathrm{2}} \left({x}\right)=β\int_{\mathrm{0}} ^{\:{x}} \frac{{ln}\left(\mathrm{1}β{z}\right)}{{z}}{dz}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\mathrm{1}^{\ast} :\:{li}_{\mathrm{2}} \left(\mathrm{1}\right)=\zeta\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\mathrm{1}^{\ast\ast} :\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left({t}\right){dt}=β\mathrm{1} \\ $$$$\:\:\:\:\:\:\: \\ $$