Menu Close

nice-calculus-prove-that-0-1-ln-x-1-x-2-x-dx-pi-2-16-




Question Number 137439 by mnjuly1970 last updated on 02/Apr/21
            ......nice  calculus.....      prove that::        𝛘=∫_0 ^( 1) ((ln(x+(√(1−x^2  )) ))/x)dx=(π^2 /(16)) ....
nicecalculus..provethat::χ=01ln(x+1x2)xdx=π216.
Answered by mindispower last updated on 03/Apr/21
f(t)=∫_0 ^1 ((ln(tx+(√(1−x^2 ))))/x)dx,We want f(1)  f′(t)=∫_0 ^1 (dx/(tx+(√(1−x^2 ))))  x=sin(r)  f′(t)=∫_0 ^(π/2) ((cos(r)dr)/(tsin(r)+cos(r)))  cos(r)=a(tsin(r)+cos(r))+b(tcos(r)−sin(r))  at−b=0  a+bt=1  b=(t/(t^2 +1))  a=(1/(1+t^2 ))  f′(t)=∫_0 ^(π/2) (dr/(1+t^2 ))+(t/(1+t^2 ))∫_0 ^(π/2) ((tcos(r)−sin(r))/(tsin(r)+cos(r)))dr  =(π/2).(1/(1+t^2 ))+(t/(1+t^2 ))ln(t)  f(0)=(1/2)∫_0 ^1 ((ln(1−t^2 ))/t)dt=(1/2).−Σ_(n≥0) ∫_0 ^1 (t^(2n+1) /(n+1))  =−(1/4)Σ_(n≥0) (1/((n+1)^2 ))=−(π^2 /(24))  ∫_0 ^1 f′(t)=f(1)−f(0)=(π/2)arctan(1)+∫_0 ^1 ((tln(t))/(1+t^2 ))dt  =(π^2 /8)−Σ_(n≥0) (((−1)^n )/((2n+2)^2 ))=(π^2 /8)−(1/4)((π^2 /(12)))=((5π^2 )/(48))  f(1)=((5π^2 )/(48))+f(0)=((5π^2 )/(48))−(π^2 /(24))=(π^2 /(16))
f(t)=01ln(tx+1x2)xdx,Wewantf(1)f(t)=01dxtx+1x2x=sin(r)f(t)=0π2cos(r)drtsin(r)+cos(r)cos(r)=a(tsin(r)+cos(r))+b(tcos(r)sin(r))atb=0a+bt=1b=tt2+1a=11+t2f(t)=0π2dr1+t2+t1+t20π2tcos(r)sin(r)tsin(r)+cos(r)dr=π2.11+t2+t1+t2ln(t)f(0)=1201ln(1t2)tdt=12.n001t2n+1n+1=14n01(n+1)2=π22401f(t)=f(1)f(0)=π2arctan(1)+01tln(t)1+t2dt=π28n0(1)n(2n+2)2=π2814(π212)=5π248f(1)=5π248+f(0)=5π248π224=π216
Commented by mnjuly1970 last updated on 03/Apr/21
thanks alot mr power..
thanksalotmrpower..
Commented by mnjuly1970 last updated on 03/Apr/21
Commented by mindispower last updated on 03/Apr/21
pleasur sir
pleasursir
Answered by mathmax by abdo last updated on 03/Apr/21
χ=∫_0 ^1  ((log(x+(√(1−x^2 ))))/x)dx  let f(a)=∫_0 ^1  ((log(ax+(√(1−x^2 ))))/x)dx witha>0  f^′ (a)=∫_0 ^1   (x/(x(ax+(√(1−x^2 )))))dx =∫_0 ^1  (dx/(ax +(√(1−x^2 ))))  =_(x=sint)    ∫_0 ^(π/2)  ((cost )/(asint +cost))dt =∫_0 ^(π/2)  (dt/(atant +1))  =_(tant=y)    ∫_0 ^∞   (1/(ay +1)) ×(dy/((1+y^2 )))  let decompose  F(y) =(1/((ay+1)(y^2  +1))) ⇒F(y)=(α/(ay+1)) +((βy +δ)/(y^2  +1))  α =(1/((1/a^2 )+1)) =(a^2 /(a^2  +1))  lim_(y→+∞)  yF(y)=0 =(α/a)+β ⇒β=−(a/(a^2  +1))  F(0)=1 =α+δ ⇒δ=1−(a^2 /(a^2  +1)) =(1/(a^2  +1)) ⇒  F(y)=(a^2 /((a^2 +1)(ay+1)))+ ((−(a/(1+a^2 ))y+(1/(1+a^2 )))/(y^2  +1)) ⇒  ∫_0 ^∞  F(y)dy =(1/(a^2  +1))∫_0 ^∞ ( ((a^2  dy)/(ay +1))−((ay−1)/(y^2  +1)))dy  =(1/(a^2  +1))∫_0 ^∞ ((a^2 /(ay+1))−(a/2)((2y)/(y^2  +1)) +(1/(y^2  +1)))dy  =(1/(a^2 +1))[aln(ay+1)−aln(√(y^2 +1))]_0 ^∞  +(π/(2(1+a^2 )))  =(a/(a^2  +1))[ln(((ay+1)/( (√(y^2 +1)))))]_0 ^∞ +(π/(2(1+a^2 )))  =((aloga)/(a^2  +1))+(π/(2(a^2  +1))) =f^′ (a) ⇒  f(a)=∫ ((aloga)/(a^2 +1))da +(π/2)arctan(a)+C  f(1)−f(0) =∫_0 ^1  f^′ (a)da =∫_0 ^1  ((aloga)/(1+a^2 ))da +(π/2)∫_0 ^1  (da/(1+a^2 ))  ∫_0 ^1  (da/(1+a^2 )) =[arctana]_0 ^1  =(π/4)  ∫_0 ^1  ((aloga)/(1+a^2 ))da =[(1/2)log(1+a^2 )loga]_0 ^(1 ) −(1/2)∫_0 ^1  ((log(1+a^2 ))/a)da  =−(1/2)∫_0 ^1  ((log(1+a^2 ))/a)da  (log(1+u)^′  =(1/(1+u)) =Σ_(n=0) ^∞  (−1)^n  u^n  ⇒log(1+u)=Σ_(n=0) ^∞ (−1)^n  (u^(n+1) /(n+1))  =Σ_(n=1) ^∞  (−1)^(n−1)  (u^n /n) ⇒log(1+x^2 ) =Σ_(n=1) ^∞ (−1)^(n−1)  (x^(2n) /n) ⇒  ∫_0 ^1  ((log(1+x^2 ))/x)dx =Σ_(n=1) ^∞  (((−1)^(n−1) )/(n(2n+1))) =u_n   (u_n /2)=Σ_(n=1) ^∞  (((−1)^(n−1) )/(2n(2n+1))) =Σ_(n=1) ^∞  (−1)^(n−1) ((1/(2n))−(1/(2n+1)))  =(1/2)Σ_(n=1) ^∞  (((−1)^(n−1) )/n)−Σ_(n=1) ^∞  (((−1)^n )/(2n+1))  =((log2)/2)−((π/4)−1) ⇒f(1)−f(0)=−((log2)/4)+(1/2)((π/4)−1)  =−((log2)/4)+(π/8)−(1/2) ⇒f(1)=χ =−((log2)/4)+(π/8)−(1/2) +f(0)  f(0)=∫_0 ^1  ((log((√(1−x^2 ))))/x)dx rest to find f(0)....be continued...
χ=01log(x+1x2)xdxletf(a)=01log(ax+1x2)xdxwitha>0f(a)=01xx(ax+1x2)dx=01dxax+1x2=x=sint0π2costasint+costdt=0π2dtatant+1=tant=y01ay+1×dy(1+y2)letdecomposeF(y)=1(ay+1)(y2+1)F(y)=αay+1+βy+δy2+1α=11a2+1=a2a2+1limy+yF(y)=0=αa+ββ=aa2+1F(0)=1=α+δδ=1a2a2+1=1a2+1F(y)=a2(a2+1)(ay+1)+a1+a2y+11+a2y2+10F(y)dy=1a2+10(a2dyay+1ay1y2+1)dy=1a2+10(a2ay+1a22yy2+1+1y2+1)dy=1a2+1[aln(ay+1)alny2+1]0+π2(1+a2)=aa2+1[ln(ay+1y2+1)]0+π2(1+a2)=alogaa2+1+π2(a2+1)=f(a)f(a)=alogaa2+1da+π2arctan(a)+Cf(1)f(0)=01f(a)da=01aloga1+a2da+π201da1+a201da1+a2=[arctana]01=π401aloga1+a2da=[12log(1+a2)loga]011201log(1+a2)ada=1201log(1+a2)ada(log(1+u)=11+u=n=0(1)nunlog(1+u)=n=0(1)nun+1n+1=n=1(1)n1unnlog(1+x2)=n=1(1)n1x2nn01log(1+x2)xdx=n=1(1)n1n(2n+1)=unun2=n=1(1)n12n(2n+1)=n=1(1)n1(12n12n+1)=12n=1(1)n1nn=1(1)n2n+1=log22(π41)f(1)f(0)=log24+12(π41)=log24+π812f(1)=χ=log24+π812+f(0)f(0)=01log(1x2)xdxresttofindf(0).becontinued
Commented by mnjuly1970 last updated on 03/Apr/21
thanks alot mr max....
thanksalotmrmax.

Leave a Reply

Your email address will not be published. Required fields are marked *