Question Number 137439 by mnjuly1970 last updated on 02/Apr/21

Answered by mindispower last updated on 03/Apr/21

Commented by mnjuly1970 last updated on 03/Apr/21

Commented by mnjuly1970 last updated on 03/Apr/21

Commented by mindispower last updated on 03/Apr/21

Answered by mathmax by abdo last updated on 03/Apr/21
![χ=∫_0 ^1 ((log(x+(√(1−x^2 ))))/x)dx let f(a)=∫_0 ^1 ((log(ax+(√(1−x^2 ))))/x)dx witha>0 f^′ (a)=∫_0 ^1 (x/(x(ax+(√(1−x^2 )))))dx =∫_0 ^1 (dx/(ax +(√(1−x^2 )))) =_(x=sint) ∫_0 ^(π/2) ((cost )/(asint +cost))dt =∫_0 ^(π/2) (dt/(atant +1)) =_(tant=y) ∫_0 ^∞ (1/(ay +1)) ×(dy/((1+y^2 ))) let decompose F(y) =(1/((ay+1)(y^2 +1))) ⇒F(y)=(α/(ay+1)) +((βy +δ)/(y^2 +1)) α =(1/((1/a^2 )+1)) =(a^2 /(a^2 +1)) lim_(y→+∞) yF(y)=0 =(α/a)+β ⇒β=−(a/(a^2 +1)) F(0)=1 =α+δ ⇒δ=1−(a^2 /(a^2 +1)) =(1/(a^2 +1)) ⇒ F(y)=(a^2 /((a^2 +1)(ay+1)))+ ((−(a/(1+a^2 ))y+(1/(1+a^2 )))/(y^2 +1)) ⇒ ∫_0 ^∞ F(y)dy =(1/(a^2 +1))∫_0 ^∞ ( ((a^2 dy)/(ay +1))−((ay−1)/(y^2 +1)))dy =(1/(a^2 +1))∫_0 ^∞ ((a^2 /(ay+1))−(a/2)((2y)/(y^2 +1)) +(1/(y^2 +1)))dy =(1/(a^2 +1))[aln(ay+1)−aln(√(y^2 +1))]_0 ^∞ +(π/(2(1+a^2 ))) =(a/(a^2 +1))[ln(((ay+1)/( (√(y^2 +1)))))]_0 ^∞ +(π/(2(1+a^2 ))) =((aloga)/(a^2 +1))+(π/(2(a^2 +1))) =f^′ (a) ⇒ f(a)=∫ ((aloga)/(a^2 +1))da +(π/2)arctan(a)+C f(1)−f(0) =∫_0 ^1 f^′ (a)da =∫_0 ^1 ((aloga)/(1+a^2 ))da +(π/2)∫_0 ^1 (da/(1+a^2 )) ∫_0 ^1 (da/(1+a^2 )) =[arctana]_0 ^1 =(π/4) ∫_0 ^1 ((aloga)/(1+a^2 ))da =[(1/2)log(1+a^2 )loga]_0 ^(1 ) −(1/2)∫_0 ^1 ((log(1+a^2 ))/a)da =−(1/2)∫_0 ^1 ((log(1+a^2 ))/a)da (log(1+u)^′ =(1/(1+u)) =Σ_(n=0) ^∞ (−1)^n u^n ⇒log(1+u)=Σ_(n=0) ^∞ (−1)^n (u^(n+1) /(n+1)) =Σ_(n=1) ^∞ (−1)^(n−1) (u^n /n) ⇒log(1+x^2 ) =Σ_(n=1) ^∞ (−1)^(n−1) (x^(2n) /n) ⇒ ∫_0 ^1 ((log(1+x^2 ))/x)dx =Σ_(n=1) ^∞ (((−1)^(n−1) )/(n(2n+1))) =u_n (u_n /2)=Σ_(n=1) ^∞ (((−1)^(n−1) )/(2n(2n+1))) =Σ_(n=1) ^∞ (−1)^(n−1) ((1/(2n))−(1/(2n+1))) =(1/2)Σ_(n=1) ^∞ (((−1)^(n−1) )/n)−Σ_(n=1) ^∞ (((−1)^n )/(2n+1)) =((log2)/2)−((π/4)−1) ⇒f(1)−f(0)=−((log2)/4)+(1/2)((π/4)−1) =−((log2)/4)+(π/8)−(1/2) ⇒f(1)=χ =−((log2)/4)+(π/8)−(1/2) +f(0) f(0)=∫_0 ^1 ((log((√(1−x^2 ))))/x)dx rest to find f(0)....be continued...](https://www.tinkutara.com/question/Q137449.png)
Commented by mnjuly1970 last updated on 03/Apr/21
