Menu Close

nice-calculus-prove-that-0-1-log-1-x-x-2-dx-2-2-




Question Number 137829 by mnjuly1970 last updated on 07/Apr/21
     .......nice  ... ... .... calculus.....              prove that ::::   𝛗=∫_0 ^( 1) (((log(1βˆ’x))/x))^2 dx=2ΞΆ(2)....
$$\:\:\:\:\:…….{nice}\:\:…\:…\:….\:{calculus}….. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{prove}\:{that}\::::: \\ $$$$\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{log}\left(\mathrm{1}βˆ’{x}\right)}{{x}}\right)^{\mathrm{2}} {dx}=\mathrm{2}\zeta\left(\mathrm{2}\right)…. \\ $$$$ \\ $$
Answered by EnterUsername last updated on 07/Apr/21
∫_0 ^1 (((ln(1βˆ’x))/x))^2 dx  =∫_0 ^1 ((ln^2 x)/((1βˆ’x)^2 ))dx=[((ln^2 x)/(1βˆ’x))βˆ’2∫((lnx)/(x(1βˆ’x)))dx]_0 ^1   =[((ln^2 x)/(1βˆ’x))βˆ’2∫(((lnx)/x)+((lnx)/(1βˆ’x)))dx]_0 ^1   =[((ln^2 x)/(1βˆ’x))βˆ’ln^2 x]_0 ^1 βˆ’2∫_0 ^1 ((lnx)/(1βˆ’x))dx  =2Οˆβ€²(1)=2Ξ£_(n=0) ^∞ (1/((n+1)^2 ))=2Ξ£_(n=1) ^∞ (1/n^2 )=2ΞΆ(2)=(Ο€^2 /3)
$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{{ln}\left(\mathrm{1}βˆ’{x}\right)}{{x}}\right)^{\mathrm{2}} {dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}^{\mathrm{2}} {x}}{\left(\mathrm{1}βˆ’{x}\right)^{\mathrm{2}} }{dx}=\left[\frac{{ln}^{\mathrm{2}} {x}}{\mathrm{1}βˆ’{x}}βˆ’\mathrm{2}\int\frac{{lnx}}{{x}\left(\mathrm{1}βˆ’{x}\right)}{dx}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\left[\frac{{ln}^{\mathrm{2}} {x}}{\mathrm{1}βˆ’{x}}βˆ’\mathrm{2}\int\left(\frac{{lnx}}{{x}}+\frac{{lnx}}{\mathrm{1}βˆ’{x}}\right){dx}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\left[\frac{{ln}^{\mathrm{2}} {x}}{\mathrm{1}βˆ’{x}}βˆ’{ln}^{\mathrm{2}} {x}\right]_{\mathrm{0}} ^{\mathrm{1}} βˆ’\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{lnx}}{\mathrm{1}βˆ’{x}}{dx} \\ $$$$=\mathrm{2}\psi'\left(\mathrm{1}\right)=\mathrm{2}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }=\mathrm{2}\zeta\left(\mathrm{2}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{3}} \\ $$
Commented by mnjuly1970 last updated on 07/Apr/21
thanks alot ...
$${thanks}\:{alot}\:… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *