Menu Close

nice-calculus-prove-that-0-1-log-1-x-x-2-dx-2-2-




Question Number 137829 by mnjuly1970 last updated on 07/Apr/21
     .......nice  ... ... .... calculus.....              prove that ::::   𝛗=∫_0 ^( 1) (((log(1βˆ’x))/x))^2 dx=2ΞΆ(2)....
…….nice……….calculus…..provethat::::Ο•=∫01(log(1βˆ’x)x)2dx=2ΞΆ(2)….
Answered by EnterUsername last updated on 07/Apr/21
∫_0 ^1 (((ln(1βˆ’x))/x))^2 dx  =∫_0 ^1 ((ln^2 x)/((1βˆ’x)^2 ))dx=[((ln^2 x)/(1βˆ’x))βˆ’2∫((lnx)/(x(1βˆ’x)))dx]_0 ^1   =[((ln^2 x)/(1βˆ’x))βˆ’2∫(((lnx)/x)+((lnx)/(1βˆ’x)))dx]_0 ^1   =[((ln^2 x)/(1βˆ’x))βˆ’ln^2 x]_0 ^1 βˆ’2∫_0 ^1 ((lnx)/(1βˆ’x))dx  =2Οˆβ€²(1)=2Ξ£_(n=0) ^∞ (1/((n+1)^2 ))=2Ξ£_(n=1) ^∞ (1/n^2 )=2ΞΆ(2)=(Ο€^2 /3)
∫01(ln(1βˆ’x)x)2dx=∫01ln2x(1βˆ’x)2dx=[ln2x1βˆ’xβˆ’2∫lnxx(1βˆ’x)dx]01=[ln2x1βˆ’xβˆ’2∫(lnxx+lnx1βˆ’x)dx]01=[ln2x1βˆ’xβˆ’ln2x]01βˆ’2∫01lnx1βˆ’xdx=2Οˆβ€²(1)=2βˆ‘βˆžn=01(n+1)2=2βˆ‘βˆžn=11n2=2ΞΆ(2)=Ο€23
Commented by mnjuly1970 last updated on 07/Apr/21
thanks alot ...
thanksalot…

Leave a Reply

Your email address will not be published. Required fields are marked *