Menu Close

nice-calculus-prove-that-0-1-log-1-x-x-2-dx-2-2-




Question Number 137829 by mnjuly1970 last updated on 07/Apr/21
     .......nice  ... ... .... calculus.....              prove that ::::   𝛗=∫_0 ^( 1) (((log(1−x))/x))^2 dx=2ζ(2)....
.nice.calculus..provethat::::ϕ=01(log(1x)x)2dx=2ζ(2).
Answered by EnterUsername last updated on 07/Apr/21
∫_0 ^1 (((ln(1−x))/x))^2 dx  =∫_0 ^1 ((ln^2 x)/((1−x)^2 ))dx=[((ln^2 x)/(1−x))−2∫((lnx)/(x(1−x)))dx]_0 ^1   =[((ln^2 x)/(1−x))−2∫(((lnx)/x)+((lnx)/(1−x)))dx]_0 ^1   =[((ln^2 x)/(1−x))−ln^2 x]_0 ^1 −2∫_0 ^1 ((lnx)/(1−x))dx  =2ψ′(1)=2Σ_(n=0) ^∞ (1/((n+1)^2 ))=2Σ_(n=1) ^∞ (1/n^2 )=2ζ(2)=(π^2 /3)
01(ln(1x)x)2dx=01ln2x(1x)2dx=[ln2x1x2lnxx(1x)dx]01=[ln2x1x2(lnxx+lnx1x)dx]01=[ln2x1xln2x]01201lnx1xdx=2ψ(1)=2n=01(n+1)2=2n=11n2=2ζ(2)=π23
Commented by mnjuly1970 last updated on 07/Apr/21
thanks alot ...
thanksalot

Leave a Reply

Your email address will not be published. Required fields are marked *