Menu Close

nice-calculus-prove-that-0-cos-2x-cosh-x-dx-pi-2cosh-pi-




Question Number 132023 by mnjuly1970 last updated on 10/Feb/21
                .....nice  calculus.....  prove that:::      𝛗=∫_0 ^( ∞) ((cos(2x))/(cosh(x))) dx=^? (Ο€/(2cosh(Ο€)))
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..{nice}\:\:{calculus}….. \\ $$$${prove}\:{that}::: \\ $$$$\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{cos}\left(\mathrm{2}{x}\right)}{{cosh}\left({x}\right)}\:{dx}\overset{?} {=}\frac{\pi}{\mathrm{2}{cosh}\left(\pi\right)} \\ $$$$ \\ $$
Answered by mindispower last updated on 10/Feb/21
(1/(ch(x)))=((2e^x )/(e^(2x) +1))=2e^(βˆ’x) Ξ£_(kβ‰₯0) (βˆ’1)^k e^(βˆ’2kx)   =Ξ£_(kβ‰₯0) (βˆ’1)^k e^(βˆ’x(2k+1)) ....true βˆ€x>0  Ο†=(1/2)Re∫_(βˆ’βˆž) ^∞ 2((e^(2ix+x)  )/(e^(2x) +1))dx  let C ={x,Imxβ‰₯0}  e^(2x) +1=0β‡’2x=iΟ€+2ikΟ€  x_k =i((Ο€/2)+kΟ€),kβ‰₯0  Res((e^(2ix+x) /(e^(2x) +1)),x_k )=((e^(βˆ’Ο€βˆ’2kΟ€) .i.(βˆ’1)^k )/(2(βˆ’1)))  ∫_C (e^(2ix+x) /(e^(2x) +1))dx=2iΟ€Res((e^(2ix+x) /(e^(2x) +1)),x∈C)  =2iπΣ_(kβ‰₯0) ((e^(βˆ’Ο€βˆ’2kΟ€) i(βˆ’1)^k )/(βˆ’2))  =Ο€e^(βˆ’Ο€) Ξ£_(kβ‰₯0) (βˆ’e^(βˆ’2Ο€) )^k =((Ο€e^(βˆ’Ο€) )/(1+e^(βˆ’2Ο€) ))=(Ο€/(e^Ο€ +e^(βˆ’Ο€) ))=(Ο€/(2ch(Ο€)))  we get so  ∫_0 ^∞ ((cos(2x))/(ch(x)))dx=(1/2).Re.2(Ο€/(2ch(Ο€)))=(Ο€/(2cosh(Ο€)))
$$\frac{\mathrm{1}}{{ch}\left({x}\right)}=\frac{\mathrm{2}{e}^{{x}} }{{e}^{\mathrm{2}{x}} +\mathrm{1}}=\mathrm{2}{e}^{βˆ’{x}} \underset{{k}\geqslant\mathrm{0}} {\sum}\left(βˆ’\mathrm{1}\right)^{{k}} {e}^{βˆ’\mathrm{2}{kx}} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\left(βˆ’\mathrm{1}\right)^{{k}} {e}^{βˆ’{x}\left(\mathrm{2}{k}+\mathrm{1}\right)} ….{true}\:\forall{x}>\mathrm{0} \\ $$$$\phi=\frac{\mathrm{1}}{\mathrm{2}}{Re}\int_{βˆ’\infty} ^{\infty} \mathrm{2}\frac{{e}^{\mathrm{2}{ix}+{x}} \:}{{e}^{\mathrm{2}{x}} +\mathrm{1}}{dx} \\ $$$${let}\:{C}\:=\left\{{x},{Imx}\geqslant\mathrm{0}\right\} \\ $$$${e}^{\mathrm{2}{x}} +\mathrm{1}=\mathrm{0}\Rightarrow\mathrm{2}{x}={i}\pi+\mathrm{2}{ik}\pi \\ $$$${x}_{{k}} ={i}\left(\frac{\pi}{\mathrm{2}}+{k}\pi\right),{k}\geqslant\mathrm{0} \\ $$$${Res}\left(\frac{{e}^{\mathrm{2}{ix}+{x}} }{{e}^{\mathrm{2}{x}} +\mathrm{1}},{x}_{{k}} \right)=\frac{{e}^{βˆ’\piβˆ’\mathrm{2}{k}\pi} .{i}.\left(βˆ’\mathrm{1}\right)^{{k}} }{\mathrm{2}\left(βˆ’\mathrm{1}\right)} \\ $$$$\int_{{C}} \frac{{e}^{\mathrm{2}{ix}+{x}} }{{e}^{\mathrm{2}{x}} +\mathrm{1}}{dx}=\mathrm{2}{i}\pi{Res}\left(\frac{{e}^{\mathrm{2}{ix}+{x}} }{{e}^{\mathrm{2}{x}} +\mathrm{1}},{x}\in{C}\right) \\ $$$$=\mathrm{2}{i}\pi\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{{e}^{βˆ’\piβˆ’\mathrm{2}{k}\pi} {i}\left(βˆ’\mathrm{1}\right)^{{k}} }{βˆ’\mathrm{2}} \\ $$$$=\pi{e}^{βˆ’\pi} \underset{{k}\geqslant\mathrm{0}} {\sum}\left(βˆ’{e}^{βˆ’\mathrm{2}\pi} \right)^{{k}} =\frac{\pi{e}^{βˆ’\pi} }{\mathrm{1}+{e}^{βˆ’\mathrm{2}\pi} }=\frac{\pi}{{e}^{\pi} +{e}^{βˆ’\pi} }=\frac{\pi}{\mathrm{2}{ch}\left(\pi\right)} \\ $$$${we}\:{get}\:{so} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{cos}\left(\mathrm{2}{x}\right)}{{ch}\left({x}\right)}{dx}=\frac{\mathrm{1}}{\mathrm{2}}.{Re}.\mathrm{2}\frac{\pi}{\mathrm{2}{ch}\left(\pi\right)}=\frac{\pi}{\mathrm{2}{cosh}\left(\pi\right)} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 10/Feb/21
excellent..  thanks alot sir power...
$${excellent}.. \\ $$$${thanks}\:{alot}\:{sir}\:{power}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *