Question Number 132023 by mnjuly1970 last updated on 10/Feb/21
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…..{nice}\:\:{calculus}….. \\ $$$${prove}\:{that}::: \\ $$$$\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \frac{{cos}\left(\mathrm{2}{x}\right)}{{cosh}\left({x}\right)}\:{dx}\overset{?} {=}\frac{\pi}{\mathrm{2}{cosh}\left(\pi\right)} \\ $$$$ \\ $$
Answered by mindispower last updated on 10/Feb/21
$$\frac{\mathrm{1}}{{ch}\left({x}\right)}=\frac{\mathrm{2}{e}^{{x}} }{{e}^{\mathrm{2}{x}} +\mathrm{1}}=\mathrm{2}{e}^{β{x}} \underset{{k}\geqslant\mathrm{0}} {\sum}\left(β\mathrm{1}\right)^{{k}} {e}^{β\mathrm{2}{kx}} \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\left(β\mathrm{1}\right)^{{k}} {e}^{β{x}\left(\mathrm{2}{k}+\mathrm{1}\right)} ….{true}\:\forall{x}>\mathrm{0} \\ $$$$\phi=\frac{\mathrm{1}}{\mathrm{2}}{Re}\int_{β\infty} ^{\infty} \mathrm{2}\frac{{e}^{\mathrm{2}{ix}+{x}} \:}{{e}^{\mathrm{2}{x}} +\mathrm{1}}{dx} \\ $$$${let}\:{C}\:=\left\{{x},{Imx}\geqslant\mathrm{0}\right\} \\ $$$${e}^{\mathrm{2}{x}} +\mathrm{1}=\mathrm{0}\Rightarrow\mathrm{2}{x}={i}\pi+\mathrm{2}{ik}\pi \\ $$$${x}_{{k}} ={i}\left(\frac{\pi}{\mathrm{2}}+{k}\pi\right),{k}\geqslant\mathrm{0} \\ $$$${Res}\left(\frac{{e}^{\mathrm{2}{ix}+{x}} }{{e}^{\mathrm{2}{x}} +\mathrm{1}},{x}_{{k}} \right)=\frac{{e}^{β\piβ\mathrm{2}{k}\pi} .{i}.\left(β\mathrm{1}\right)^{{k}} }{\mathrm{2}\left(β\mathrm{1}\right)} \\ $$$$\int_{{C}} \frac{{e}^{\mathrm{2}{ix}+{x}} }{{e}^{\mathrm{2}{x}} +\mathrm{1}}{dx}=\mathrm{2}{i}\pi{Res}\left(\frac{{e}^{\mathrm{2}{ix}+{x}} }{{e}^{\mathrm{2}{x}} +\mathrm{1}},{x}\in{C}\right) \\ $$$$=\mathrm{2}{i}\pi\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{{e}^{β\piβ\mathrm{2}{k}\pi} {i}\left(β\mathrm{1}\right)^{{k}} }{β\mathrm{2}} \\ $$$$=\pi{e}^{β\pi} \underset{{k}\geqslant\mathrm{0}} {\sum}\left(β{e}^{β\mathrm{2}\pi} \right)^{{k}} =\frac{\pi{e}^{β\pi} }{\mathrm{1}+{e}^{β\mathrm{2}\pi} }=\frac{\pi}{{e}^{\pi} +{e}^{β\pi} }=\frac{\pi}{\mathrm{2}{ch}\left(\pi\right)} \\ $$$${we}\:{get}\:{so} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{cos}\left(\mathrm{2}{x}\right)}{{ch}\left({x}\right)}{dx}=\frac{\mathrm{1}}{\mathrm{2}}.{Re}.\mathrm{2}\frac{\pi}{\mathrm{2}{ch}\left(\pi\right)}=\frac{\pi}{\mathrm{2}{cosh}\left(\pi\right)} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 10/Feb/21
$${excellent}.. \\ $$$${thanks}\:{alot}\:{sir}\:{power}… \\ $$