Menu Close

nice-calculus-prove-that-0-ln-1-x-2-1-x-2-2-dx-pi-2-ln-2-pi-4-




Question Number 136555 by mnjuly1970 last updated on 23/Mar/21
         ....nice    ......   calculus....     prove that          𝛗=∫_0 ^( ∞) ((ln(1+x^2 ))/((1+x^2 )^2 ))dx=(π/2)ln(2)−(π/4)       ::::::::
.nicecalculus.provethatϕ=0ln(1+x2)(1+x2)2dx=π2ln(2)π4::::::::
Answered by mnjuly1970 last updated on 23/Mar/21
   f(a)=∫_0 ^( ∞) (dx/((1+x^2 )^a ))    ...(a>(1/2))       f(a)=^(x^2 =y) (1/2)∫_0 ^( ∞) (y^((−1)/2) /((1+y)^a ))dy=β((1/2),a−(1/2))       f(a)=(1/2)((((√π) Γ(a−(1/2)))/(Γ(a))))       goal::  𝛗=−f ′(2)               f ′(a)=((√π)/2) (((Γ′(a−(1/2)).Γ(a)−Γ′(a).Γ(a−(1/2)))/(Γ^2 (a))))            f ′(2)=((√π)/2)(((ψ((3/2))Γ((3/2))−ψ(2)Γ((3/2) ))/1^2 ))      =((√π)/2)(((√π)/2)(2−γ−2ln(2)−(1−γ)))         ∴   −𝛗=(π/4)(2−γ−2ln(2)−1+γ)               =(π/4)(1−2ln(2))=(π/4)−(π/2)ln(2)..✓               ∴  𝛗=(π/2)ln(2)−(π/4) ....                    m.n
f(a)=0dx(1+x2)a(a>12)f(a)=x2=y120y12(1+y)ady=β(12,a12)f(a)=12(πΓ(a12)Γ(a))goal::ϕ=f(2)f(a)=π2(Γ(a12).Γ(a)Γ(a).Γ(a12)Γ2(a))f(2)=π2(ψ(32)Γ(32)ψ(2)Γ(32)12)=π2(π2(2γ2ln(2)(1γ)))ϕ=π4(2γ2ln(2)1+γ)=π4(12ln(2))=π4π2ln(2)..ϕ=π2ln(2)π4.m.n
Answered by mindispower last updated on 23/Mar/21
=∫_0 ^(π/2) ((ln((1/(cos^2 (x)))))/((1+tg^2 (x))^2 ))dtg(x)  =∫_0 ^(π/2) −2cos^2 (x)ln(cos(x))dx..A  β(a,b)=2∫_0 ^(π/2) cos^(2a−1) (x).sin^(2b−1) (x)dx  A=−(1/2)∂^a β(a,b)∣(a,b)=((3/2),(1/2))  =−(1/2)β(a,b)(Ψ(a)−Ψ(a+b))  =−(1/2).((Γ((1/2))Γ((3/2)))/(Γ(2)))(Ψ((3/2))−Ψ(2))  =−(1/2).(1/2).π(2+Ψ((1/2))−(1−γ))  =−(π/4)(1−2ln(2))=((πln(2))/4)−(π/4)
=0π2ln(1cos2(x))(1+tg2(x))2dtg(x)=0π22cos2(x)ln(cos(x))dx..Aβ(a,b)=20π2cos2a1(x).sin2b1(x)dxA=12aβ(a,b)(a,b)=(32,12)=12β(a,b)(Ψ(a)Ψ(a+b))=12.Γ(12)Γ(32)Γ(2)(Ψ(32)Ψ(2))=12.12.π(2+Ψ(12)(1γ))=π4(12ln(2))=πln(2)4π4
Commented by mnjuly1970 last updated on 23/Mar/21
thanks alot....
thanksalot.
Answered by Dwaipayan Shikari last updated on 23/Mar/21
ϑ(α)=∫_0 ^∞ (((1+x^2 )^α )/((1+x^2 )^2 ))dx=∫_0 ^∞ (1/((1+x^2 )^(2−α) ))dx  =(1/2)∫_0 ^∞ (u^((1/2)−1) /((1+u)^((1/2)+(3/2)−α) ))du=(1/2).((Γ((1/2))Γ((3/2)−α))/(Γ(2−α)))  ϑ′(α)=((−(√π) Γ(2−α)Γ′((3/2)−α)+(√π) Γ(2−α)ψ(2−α)Γ((3/2)−α))/(2Γ^2 (2−α)))  ϑ′(0)=((−(π/2)ψ((3/2))+(π/2)ψ(2))/2)=(π/4)(−γ+1+γ−2log(2))  =(π/4)−(π/2)log(2)  −ϑ′(0)=∫_0 ^∞ ((log(x^2 +1))/((x^2 +1)^2 ))dx=(π/2)log(2)−(π/4)
ϑ(α)=0(1+x2)α(1+x2)2dx=01(1+x2)2αdx=120u121(1+u)12+32αdu=12.Γ(12)Γ(32α)Γ(2α)ϑ(α)=πΓ(2α)Γ(32α)+πΓ(2α)ψ(2α)Γ(32α)2Γ2(2α)ϑ(0)=π2ψ(32)+π2ψ(2)2=π4(γ+1+γ2log(2))=π4π2log(2)ϑ(0)=0log(x2+1)(x2+1)2dx=π2log(2)π4
Commented by mnjuly1970 last updated on 23/Mar/21
thanking...
thanking

Leave a Reply

Your email address will not be published. Required fields are marked *