Menu Close

nice-calculus-prove-that-0-sin-x-log-2-x-x-pi-24-12-2-pi-2-




Question Number 132877 by mnjuly1970 last updated on 17/Feb/21
             .... nice  calculus...     prove that :    𝛗=∫_0 ^( ∞) ((sin(x).log^2 (x))/x)         =(π/(24))(12γ^( 2) +π^2 ) .....
.nicecalculusprovethat:ϕ=0sin(x).log2(x)x=π24(12γ2+π2)..
Answered by Dwaipayan Shikari last updated on 17/Feb/21
φ(α)=∫_0 ^∞ ((sinx)/x^α )dx  φ(α)=(1/(Γ(α)))∫_0 ^∞ ∫_0 ^∞ t^(α−1) e^(−xt) sin(x)dtdx  =(1/(2iΓ(α)))∫_0 ^∞ ∫_0 ^∞ t^(α−1) e^(−(t−i)x) −t^(α−1) e^(−(t+i)x) dx  =(1/(2iΓ(α)))∫_0 ^∞ (t^(α−1) /(t−i))−(t^(α−1) /(t+i))dt  =(1/(Γ(α)))∫_0 ^∞ (t^(α−1) /(t^2 +1))dt=(1/(2Γ(α)))∫_0 ^∞ (u^((α/2)−1) /((u+1)^(1−(α/2)+(α/2)) ))du  =(1/(2Γ(α))).((Γ((α/2))Γ(1−(α/2)))/(Γ(1)))=(π/(2Γ(α)sin(((πα)/2))))  φ′′(α)∣_(α=1) =∫_0 ^∞ ((sin(x)log^2 (x))/x)dx=  (π/(24))(12γ^2 +π^2 )
ϕ(α)=0sinxxαdxϕ(α)=1Γ(α)00tα1extsin(x)dtdx=12iΓ(α)00tα1e(ti)xtα1e(t+i)xdx=12iΓ(α)0tα1titα1t+idt=1Γ(α)0tα1t2+1dt=12Γ(α)0uα21(u+1)1α2+α2du=12Γ(α).Γ(α2)Γ(1α2)Γ(1)=π2Γ(α)sin(πα2)ϕ(α)α=1=0sin(x)log2(x)xdx=π24(12γ2+π2)
Commented by Dwaipayan Shikari last updated on 17/Feb/21
φ′(α)=−((π^2 /(4Γ(α))).((cos((π/2)α))/(sin^2 ((π/2)α)))+(((π^2 /2)Γ(α).((cos((π/2)α))/(sin^2 ((π/2)α))))/(2Γ^2 (α)))+((πΓ′(α)cosec((π/2)2α))/(2Γ^2 (α))))  φ′(1)=((πγ)/2)
ϕ(α)=(π24Γ(α).cos(π2α)sin2(π2α)+π22Γ(α).cos(π2α)sin2(π2α)2Γ2(α)+πΓ(α)cosec(π22α)2Γ2(α))ϕ(1)=πγ2
Commented by mnjuly1970 last updated on 17/Feb/21
with thanking sir payan...
withthankingsirpayan

Leave a Reply

Your email address will not be published. Required fields are marked *