Menu Close

nice-calculus-prove-that-1-0-1-li-2-1-x-2-pi-2-2-4-2-0-1-log-1-t-t-3-4-1-t-dt-pi-3-2-2-2-3-4-log-2-pi-2-hi




Question Number 131991 by mnjuly1970 last updated on 10/Feb/21
            ...nice         calculus...      prove  that :    φ_1 =∫_0 ^( 1) li_2 (1−x^2 )=(π^2 /2) −4      φ_2 =∫_0 ^( 1) ((log(1−t))/(t^(3/4) (√(1−t))))dt=π^(3/2) .((√2)/(Γ^2 ((3/4))))(log(2)−(π/2))  hint   1:ψ((3/4))=_(easy) ^(why??) −γ+(π/2)−3log(2)  hint  2 :ψ((1/2))=_(easy) ^(why??) −γ−2log(2)
nicecalculusprovethat:ϕ1=01li2(1x2)=π224ϕ2=01log(1t)t341tdt=π32.2Γ2(34)(log(2)π2)hint1:ψ(34)=why??easyγ+π23log(2)hint2:ψ(12)=why??easyγ2log(2)
Answered by Dwaipayan Shikari last updated on 10/Feb/21
ψ((1/2))=−γ+∫_0 ^1 ((1−x^(−(1/2)) )/(1−x))dx=−γ+2∫_0 ^1 ((x−1)/(1−x^2 ))dx  =−γ−2log(2)
ψ(12)=γ+011x121xdx=γ+201x11x2dx=γ2log(2)
Answered by Dwaipayan Shikari last updated on 10/Feb/21
I(b)=∫_0 ^1 t^(a−1) (1−t)^(b−1) dt=((Γ(a)Γ(b))/(Γ(a+b)))  I′(b)=∫_0 ^1 t^(a−1) (1−t)^(b−1) log(1−t)dt  =((Γ(a)(Γ(a+b)Γ′(b)−Γ′(a+b)Γ(b)))/(Γ^2 (a+b)))  put b=(1/2)    a=(1/4)
I(b)=01ta1(1t)b1dt=Γ(a)Γ(b)Γ(a+b)I(b)=01ta1(1t)b1log(1t)dt=Γ(a)(Γ(a+b)Γ(b)Γ(a+b)Γ(b))Γ2(a+b)putb=12a=14

Leave a Reply

Your email address will not be published. Required fields are marked *