Menu Close

nice-calculus-prove-that-cos-pix-2-cosh-pix-dx-1-2-




Question Number 140831 by mnjuly1970 last updated on 13/May/21
                    ......nice .... calculus......       prove  that::           ξ := ∫_(−∞) ^( ∞) ((cos (πx^2 ))/(cosh(πx)))dx=(1/( (√2))) ....      .......
nice.calculusprovethat::ξ:=cos(πx2)cosh(πx)dx=12..
Answered by mathmax by abdo last updated on 13/May/21
Φ=∫_(−∞) ^(+∞)  ((cos(πx^2 ))/(ch(πx)))dx ⇒Φ=_(πx=t)   2∫_0 ^(+∞)  ((cos(t.(t/π)))/(ch(t)))(dt/π)  =(2/π) ∫_0 ^(+∞)  ((cos((t^2 /π)))/(ch(t)))dt ⇒ Φ=(4/π)∫_0 ^(+∞)  ((cos((t^2 /π)))/(e^t  +e^(−t) ))dt  =(4/π) ∫_0 ^∞   ((e^(−t)  cos((t^2 /π)))/(1+e^(−2t) )) dt ⇒(π/4)Φ=∫_0 ^∞ e^(−t)  cos((t^2 /π))Σ_(n=0) ^∞  e^(−2nt)  dt  =Σ_(n=0) ^∞  ∫_0 ^∞  e^(−(2n+1)t)  cos((t^2 /π))dt  =_((2n+1)t=y)     Σ_(n=0) ^∞  ∫_0 ^∞ e^(−y)  cos((y^2 /(π(2n+1)^2 )))(dy/((2n+1)))  =Σ_(n=0) ^∞  (1/(2n+1)) Re(∫_0 ^∞  e^(−y−i(y^2 /(π(2n+1)^2 ))) dy) we have  ∫_0 ^∞   e^(−i(y^2 /(π(2n+1)^2 ))−y) dy =∫_0 ^∞   e^(−i(((y/( (√π)(2n+1))))^2 −iy)) dy  =∫_0 ^∞ e^(−i{ ((y/( (√π)(2n+1))))^2 −2((y/( (√π)(2n+1))))i(√π)(2n+1)+π(2n+1)^2 −π(2n+1)^2 }) dy  =∫_0 ^∞   e^(−i{((y/( (√π)(2n+1)))−(√π)(2n+1))^2 −π(2n+1)^2 }) dy  =e^(iπ(2n+1)^(2 )  ) ∫_0 ^∞  e^(−i{(y/( (√π)(2n+1)))−(√π)(2n+1)}^2 ) dy  =_((y/( (√π)(2n+1)))−(√π)(2n+1) =z) e^(iπ(2n+)^2 )    ∫_(−(√π)(2n+1)) ^(+∞)  e^(−iz^2 ) (√π)(2n+1)dz   ....be continued...
Φ=+cos(πx2)ch(πx)dxΦ=πx=t20+cos(t.tπ)ch(t)dtπ=2π0+cos(t2π)ch(t)dtΦ=4π0+cos(t2π)et+etdt=4π0etcos(t2π)1+e2tdtπ4Φ=0etcos(t2π)n=0e2ntdt=n=00e(2n+1)tcos(t2π)dt=(2n+1)t=yn=00eycos(y2π(2n+1)2)dy(2n+1)=n=012n+1Re(0eyiy2π(2n+1)2dy)wehave0eiy2π(2n+1)2ydy=0ei((yπ(2n+1))2iy)dy=0ei{(yπ(2n+1))22(yπ(2n+1))iπ(2n+1)+π(2n+1)2π(2n+1)2}dy=0ei{(yπ(2n+1)π(2n+1))2π(2n+1)2}dy=eiπ(2n+1)20ei{yπ(2n+1)π(2n+1)}2dy=yπ(2n+1)π(2n+1)=zeiπ(2n+)2π(2n+1)+eiz2π(2n+1)dz.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *