Question Number 133334 by mnjuly1970 last updated on 21/Feb/21
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{nice}\:\:\:\:\:\:{calculus}… \\ $$$$\:{prove}\:\:{that}:: \\ $$$$\:\:\:\boldsymbol{\phi}=\int_{β\infty} ^{\:+\infty} \frac{\:{cosh}\left({px}\right)}{{cosh}\left({x}\right)}\:=\:\frac{\pi}{{cos}\left(\frac{\pi{p}}{\mathrm{2}}\right)} \\ $$$$ \\ $$
Answered by mnjuly1970 last updated on 21/Feb/21
Commented by Dwaipayan Shikari last updated on 21/Feb/21
$${Haven}'{t}\:{thought}\:{of}\:.\:{Great}\:{way}\:{sir}! \\ $$
Commented by mnjuly1970 last updated on 21/Feb/21
$${sincerely}\:{yours}.. \\ $$$${grateful}\:{sir}\:{payan}… \\ $$
Answered by mathmax by abdo last updated on 22/Feb/21
$$\Phi=\int_{β\infty} ^{+\infty} \:\frac{\mathrm{ch}\left(\mathrm{px}\right)}{\mathrm{ch}\left(\mathrm{x}\right)}\mathrm{dx}\:\Rightarrow\Phi=\int_{β\infty} ^{+\infty} \:\frac{\mathrm{e}^{\mathrm{px}} \:+\mathrm{e}^{β\mathrm{px}} }{\mathrm{e}^{\mathrm{x}} +\mathrm{e}^{β\mathrm{x}} }\mathrm{dx} \\ $$$$=_{\mathrm{e}^{\mathrm{x}} \:=\mathrm{t}} \:\:\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{t}^{\mathrm{p}} \:+\mathrm{t}^{β\mathrm{p}} }{\mathrm{t}+\mathrm{t}^{β\mathrm{1}} }\frac{\mathrm{dt}}{\mathrm{t}}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{t}^{\mathrm{p}} \:+\mathrm{t}^{β\mathrm{p}} }{\mathrm{t}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{t}^{\mathrm{p}} }{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt}\:+\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{t}^{β\mathrm{p}} }{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt} \\ $$$$\mathrm{we}\:\mathrm{have}\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{t}^{\mathrm{p}} }{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt}\:=_{\mathrm{t}=\mathrm{z}^{\frac{\mathrm{1}}{\mathrm{2}}} } \:\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{z}^{\frac{\mathrm{p}}{\mathrm{2}}} }{\mathrm{1}+\mathrm{z}}\mathrm{z}^{β\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{dz} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{z}^{\frac{\mathrm{p}+\mathrm{1}}{\mathrm{2}}β\mathrm{1}} }{\mathrm{1}+\mathrm{z}}\mathrm{dz}\:=\frac{\mathrm{1}}{\mathrm{2}}\frac{\pi}{\mathrm{sin}\left(\pi\left(\frac{\mathrm{p}+\mathrm{1}}{\mathrm{2}}\right)\right)}=\frac{\pi}{\mathrm{2cos}\left(\frac{\mathrm{p}\pi}{\mathrm{2}}\right)}\:\mathrm{also} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{t}^{β\mathrm{p}} }{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt}\:=\frac{\pi}{\mathrm{2cos}\left(\frac{β\mathrm{p}\pi}{\mathrm{2}}\right)}\:=\frac{\pi}{\mathrm{2cos}\left(\frac{\mathrm{p}\pi}{\mathrm{2}}\right)}\:\Rightarrow \\ $$$$\Phi=\frac{\pi}{\mathrm{2cos}\left(\frac{\mathrm{p}\pi}{\mathrm{2}}\right)}+\frac{\pi}{\mathrm{2cos}\left(\frac{\mathrm{p}\pi}{\mathrm{2}}\right)}\:=\frac{\pi}{\mathrm{cos}\left(\frac{\mathrm{p}\pi}{\mathrm{2}}\right)} \\ $$$$ \\ $$