Menu Close

nice-calculus-prove-that-i-0-cos-pix-e-2pi-x-1-dx-2-2-8-ii-compute-n-1-n-4-9n-2-10-




Question Number 134272 by mnjuly1970 last updated on 01/Mar/21
               nice   calculus      prove that: :                 i ::   =∫_0 ^( ∞) ((cos(πx))/(e^(2π(√x) ) −1)) dx=((2−(√2) )/8)                 ii:: compute:  Σ_(n=−∞) ^∞ (1/(n^4 +9n^2 +10)) =?                               ...m.n...
nicecalculusprovethat::i::=0cos(πx)e2πx1dx=228ii::compute:n=1n4+9n2+10=?m.n
Answered by Dwaipayan Shikari last updated on 01/Mar/21
Commented by Dwaipayan Shikari last updated on 01/Mar/21
Ramanujan′s letter
Ramanujansletter
Commented by mnjuly1970 last updated on 02/Mar/21
  thank you..
thankyou..
Answered by Dwaipayan Shikari last updated on 01/Mar/21
Σ_(n=−∞) ^∞ (1/(n^4 +9n^2 +10))=(1/(10))+2Σ_(n=1) ^∞ (1/(n^4 +9n^2 +10))  =(1/(10))+(2/( (√(41))))Σ_(n=1) ^∞ (1/((n^2 +((9−(√(41)))/2))))−(1/((n^2 +((9+(√(41)))/2))))  =(1/(10))+(√(2/(41)))((π/( (√(9−(√(41))))))coth((√((9−(√(41)))/2))π)−(π/( (√(9+(√(41))))))coth((√((9+(√(41)))/2))π))+(2/( (√(41))))((1/(9+(√(41))))−(1/(9−(√(41)))))  =(√(2/(41)))((π/( (√(9−(√(41))))))coth((√((9−(√(41)))/2))π)−(π/( (√(9+(√(41))))))coth((√((9+(√(41)))/2))π))  Using Σ_(n=1) ^∞ (1/(n^2 +x^2 ))=(π/(2x))coth(πx)−(1/(2x^2 ))
n=1n4+9n2+10=110+2n=11n4+9n2+10=110+241n=11(n2+9412)1(n2+9+412)=110+241(π941coth(9412π)π9+41coth(9+412π))+241(19+411941)=241(π941coth(9412π)π9+41coth(9+412π))Usingn=11n2+x2=π2xcoth(πx)12x2

Leave a Reply

Your email address will not be published. Required fields are marked *