Menu Close

nice-calculus-prove-that-i-dx-1-x-e-x-2-pi-2-2-3-ii-0-sin-tan-x-x-dx-pi-2-1-1-e-




Question Number 136868 by mnjuly1970 last updated on 27/Mar/21
         ...... nice     calculus....    prove  that ::   i:  ∫_(−∞) ^( ∞) (dx/((1+x+e^x )^2 +π^2 )) =(2/3)   ii: ∫_0 ^( ∞) ((sin(tan(x)))/x)dx=(π/2)(1−(1/e))
nicecalculus.provethat::i:dx(1+x+ex)2+π2=23ii:0sin(tan(x))xdx=π2(11e)
Answered by Ñï= last updated on 27/Mar/21
I=∫_0 ^∞ ((sin (tan x))/x)dx=Σ_(n=0) ^∞ ∫_(n(π/2)) ^((n+1)(π/2)) ((sin (tan x))/x)dx                       ????  =Σ_(n=0) ^∞ ∫_(nπ) ^((2n+1)(π/2)) ((sin (tan x))/x)dx+Σ_(n=0) ^∞ ∫_((2n−1)(π/2)) ^(nπ) ((sin (tan x))/x)dx       ????  =Σ_(n=0) ^∞ ∫_0 ^(π/2) ((sin (tan x))/(nπ+x))dx−Σ_(n=0) ^∞ ∫_0 ^(π/2) ((sin (tan x))/(nπ−x))dx  =∫_0 ^(π/2) Σ_(n=0) ^∞ ((2x)/(x^2 −n^2 π^2 ))sin (tan x)dx  =∫_0 ^(π/2) cot xsin (tan x)dx  =∫_0 ^∞ ((sin u)/(u(1+u^2 )))du  =∫_0 ^1 da∫_0 ^∞ ((cos (au))/(1+u^2 ))du  =(π/2)∫_0 ^1 e^(−a) da  =(π/2)(1−e^(−1) )
I=0sin(tanx)xdx=n=0nπ2(n+1)π2sin(tanx)xdx????=n=0nπ(2n+1)π2sin(tanx)xdx+n=0(2n1)π2nπsin(tanx)xdx????=n=00π/2sin(tanx)nπ+xdxn=00π/2sin(tanx)nπxdx=0π/2n=02xx2n2π2sin(tanx)dx=0π/2cotxsin(tanx)dx=0sinuu(1+u2)du=01da0cos(au)1+u2du=π201eada=π2(1e1)
Commented by mnjuly1970 last updated on 27/Mar/21
  very nice ..     thank you so much ...
verynice..thankyousomuch

Leave a Reply

Your email address will not be published. Required fields are marked *