nice-calculus-prove-that-i-dx-1-x-e-x-2-pi-2-2-3-ii-0-sin-tan-x-x-dx-pi-2-1-1-e- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 136868 by mnjuly1970 last updated on 27/Mar/21 ……nicecalculus….provethat::i:∫−∞∞dx(1+x+ex)2+π2=23ii:∫0∞sin(tan(x))xdx=π2(1−1e) Answered by Ñï= last updated on 27/Mar/21 I=∫0∞sin(tanx)xdx=∑∞n=0∫nπ2(n+1)π2sin(tanx)xdx????=∑∞n=0∫nπ(2n+1)π2sin(tanx)xdx+∑∞n=0∫(2n−1)π2nπsin(tanx)xdx????=∑∞n=0∫0π/2sin(tanx)nπ+xdx−∑∞n=0∫0π/2sin(tanx)nπ−xdx=∫0π/2∑∞n=02xx2−n2π2sin(tanx)dx=∫0π/2cotxsin(tanx)dx=∫0∞sinuu(1+u2)du=∫01da∫0∞cos(au)1+u2du=π2∫01e−ada=π2(1−e−1) Commented by mnjuly1970 last updated on 27/Mar/21 verynice..thankyousomuch… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-136865Next Next post: cos2x-sin-2-x-cos-2-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.