Menu Close

nice-calculus-prove-that-n-0-2-1-n-2n-1-2-pi-2-8-1-2-ln-2-1-2-




Question Number 135944 by mnjuly1970 last updated on 17/Mar/21
           .....nice  calculus...     prove that:     Σ_(n=0) ^∞ ((((√2) −1)^n )/((2n+1)^2 ))=(π^2 /8)−(1/2)ln^2 (1+(√2) )...      ................✓
..nicecalculusprovethat:n=0(21)n(2n+1)2=π2812ln2(1+2).
Answered by mindispower last updated on 19/Mar/21
hello sir sur  for this result ?  we can  Σ_(n≥0) ((((√2)−1)^n )/((2n+1)^2 ))=(1/2)Σ_(n≥0) 2((((√((√2)−1)))^(2n) )/((2n+1)^2 ))  =(1/(2.(√((√2)−1))))Σ_(n≥0) ((((√((√2)−1)))^(2n+1) )/((2n+1)^2 ))  =(1/(2(√((√2)−1))))(Σ_(n≥1) ((((√((√2)−1)))^n )/n^2 )−Σ_(n≥1) (((−(√((√2)−1)))^n )/n^2 ))  =(1/(2(√((√2)−1))))(Li_2 ((√((√2)−1)))−Li_2 (−(√((√2)−1)))
hellosirsurforthisresult?wecann0(21)n(2n+1)2=12n02(21)2n(2n+1)2=12.21n0(21)2n+1(2n+1)2=1221(n1(21)nn2n1(21)nn2)=1221(Li2(21)Li2(21)

Leave a Reply

Your email address will not be published. Required fields are marked *