Menu Close

nice-calculus-prove-that-n-0-tan-1-1-F-n-tan-1-1-F-n-1-pi-2-4-F-n-is-fibonacci-sequence-




Question Number 137605 by mnjuly1970 last updated on 04/Apr/21
            .....nice    calculus...       prove that::       Σ_(n=0) ^∞ tan^(−1) ((1/F_n )).tan^(−1) ((1/F_(n+1) ))=(π^2 /4)    F_n  is fibonacci sequence....
$$\:\:\:\:\:\:\:\:\:\:\:\:…..{nice}\:\:\:\:{calculus}… \\ $$$$\:\:\:\:\:{prove}\:{that}:: \\ $$$$\:\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{F}_{{n}} }\right).{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{F}_{{n}+\mathrm{1}} }\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:{F}_{{n}} \:{is}\:{fibonacci}\:{sequence}…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *