Menu Close

nice-calculus-prove-that-n-1-1-1-n-4-cosh-2pi-cos-2pi-4pi-2-




Question Number 134442 by mnjuly1970 last updated on 03/Mar/21
                   nice ..... calculus...      prove that ::           𝛗=Π_(n=1) ^∞ (1+(1/n^4 ))=((cosh(2π)−cos(2π))/(4π^2 ))                         .......................
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{nice}\:…..\:{calculus}… \\ $$$$\:\:\:\:{prove}\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\right)=\frac{{cosh}\left(\mathrm{2}\pi\right)−{cos}\left(\mathrm{2}\pi\right)}{\mathrm{4}\pi^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:………………….. \\ $$
Answered by Dwaipayan Shikari last updated on 03/Mar/21
Π_(n=1) ^∞ (1+(1/n^4 ))=Π_(n=1) ^∞ (1+(i/n^2 ))(1−(i/n^2 ))=((sinh(π(√i))sin(π(√i)))/(π^2 i))  =((sinh((π/( (√2)))(1+i))sin((π/( (√2)))(1+i)))/(π^2 i))=−((e^((π/( (√2)))+(π/( (√2)))i) −e^(−(π/( (√2)))−(π/( (√2)))i) )/(4π^2 )).(e^((π/( (√2)))i−(π/( (√2)))) −e^(−(π/( (√2)))i+(π/( (√2)))) )  =−((e^((√2)πi) −e^((√2)π) −e^(−(√2)π) +e^(−(√2)πi) )/(4π^2 ))=((e^((√2)π) +e^((√2)π) −e^((√2)πi) −e^(−(√2)πi) )/(4π^2 ))  =((cosh((√2)π)−cos((√2)π))/(2π^2 ))
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{{i}}{{n}^{\mathrm{2}} }\right)\left(\mathrm{1}−\frac{{i}}{{n}^{\mathrm{2}} }\right)=\frac{{sinh}\left(\pi\sqrt{{i}}\right){sin}\left(\pi\sqrt{{i}}\right)}{\pi^{\mathrm{2}} {i}} \\ $$$$=\frac{{sinh}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\left(\mathrm{1}+{i}\right)\right){sin}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\left(\mathrm{1}+{i}\right)\right)}{\pi^{\mathrm{2}} {i}}=−\frac{{e}^{\frac{\pi}{\:\sqrt{\mathrm{2}}}+\frac{\pi}{\:\sqrt{\mathrm{2}}}{i}} −{e}^{−\frac{\pi}{\:\sqrt{\mathrm{2}}}−\frac{\pi}{\:\sqrt{\mathrm{2}}}{i}} }{\mathrm{4}\pi^{\mathrm{2}} }.\left({e}^{\frac{\pi}{\:\sqrt{\mathrm{2}}}{i}−\frac{\pi}{\:\sqrt{\mathrm{2}}}} −{e}^{−\frac{\pi}{\:\sqrt{\mathrm{2}}}{i}+\frac{\pi}{\:\sqrt{\mathrm{2}}}} \right) \\ $$$$=−\frac{{e}^{\sqrt{\mathrm{2}}\pi{i}} −{e}^{\sqrt{\mathrm{2}}\pi} −{e}^{−\sqrt{\mathrm{2}}\pi} +{e}^{−\sqrt{\mathrm{2}}\pi{i}} }{\mathrm{4}\pi^{\mathrm{2}} }=\frac{{e}^{\sqrt{\mathrm{2}}\pi} +{e}^{\sqrt{\mathrm{2}}\pi} −{e}^{\sqrt{\mathrm{2}}\pi{i}} −{e}^{−\sqrt{\mathrm{2}}\pi{i}} }{\mathrm{4}\pi^{\mathrm{2}} } \\ $$$$=\frac{{cosh}\left(\sqrt{\mathrm{2}}\pi\right)−{cos}\left(\sqrt{\mathrm{2}}\pi\right)}{\mathrm{2}\pi^{\mathrm{2}} } \\ $$
Commented by mnjuly1970 last updated on 03/Mar/21
very nice ...thanks alot sir..
$${very}\:{nice}\:…{thanks}\:{alot}\:{sir}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *