Menu Close

nice-calculus-prove-that-n-N-2-n-2-n-2n-1-pi-




Question Number 131103 by mnjuly1970 last updated on 01/Feb/21
                 ...nice  calculus...   prove  that ::    Σ_(n∈N) (((Γ^2 (n))/(2^(−n) (2n−1)!)))=π
nicecalculusprovethat::nN(Γ2(n)2n(2n1)!)=π
Answered by Ar Brandon last updated on 01/Feb/21
S=Σ_(n=1) ^∞ ((Γ^2 (n))/(2^(−n) (2n−1)!))=Σ_(n=1) ^∞ ((β(n,n))/2^(−n) )     =Σ_(n=1) ^∞ (1/2^(−n) )∫_0 ^1 x^(n−1) (1−x)^(n−1) dx     =∫_0 ^1 {Σ_(n=1) ^∞ 2∙2^(n−1) (x−x^2 )^(n−1) }dx     =∫_0 ^1 {2∙(1/(1−(2x−2x^2 )))}dx=∫_0 ^1 ((2dx)/(2x^2 −2x+1))     =∫_0 ^1 (dx/(x^2 −x+(1/2)))=∫_0 ^1 (dx/((x−(1/2))^2 +(1/4)))     =2[tan^(−1) (2x−1)]_0 ^1 =2((π/4)+(π/4))=π
S=n=1Γ2(n)2n(2n1)!=n=1β(n,n)2n=n=112n01xn1(1x)n1dx=01{n=122n1(xx2)n1}dx=01{211(2x2x2)}dx=012dx2x22x+1=01dxx2x+12=01dx(x12)2+14=2[tan1(2x1)]01=2(π4+π4)=π
Commented by mnjuly1970 last updated on 01/Feb/21
   excellent mr brandon    extraordinary..
excellentmrbrandonextraordinary..
Answered by Dwaipayan Shikari last updated on 01/Feb/21
Σ_(n=1) ^∞ ((Γ^2 (n))/(2^(−n) Γ(2n)))=∫_0 ^1 Σ_(n=1) ^∞ 2^n x^(n−1) (1−x)^(n−1) dx  =2∫_0 ^1 (1/(1−2x(1−x)))dx=∫_0 ^1 (1/(x^2 −x+(1/2)))dx=2∫_0 ^1 (1/((x−(1/2))^2 +(1/4)))dx  =2((π/2))=π
n=1Γ2(n)2nΓ(2n)=01n=12nxn1(1x)n1dx=201112x(1x)dx=011x2x+12dx=2011(x12)2+14dx=2(π2)=π
Commented by mnjuly1970 last updated on 01/Feb/21
very nice .thank you so much=.
verynice.thankyousomuch=.