Menu Close

Nice-Calculus-prove-that-x-n-1-a-n-sin-nx-n-e-acos-x-sin-asin-x-m-n-




Question Number 141057 by mnjuly1970 last updated on 15/May/21
         .....Nice ......  ......Calculus.....     prove that:   Ω(x):=Σ_(n=1) ^∞ a^n .((sin(nx))/(n!))=e^(acos(x)) sin(asin(x))     ....m.n
$$ \\ $$$$\:\:\:\:\:\:\:…..\mathscr{N}{ice}\:……\:\:……\mathscr{C}{alculus}….. \\ $$$$\:\:\:{prove}\:{that}: \\ $$$$\:\Omega\left({x}\right):=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{a}^{{n}} .\frac{{sin}\left({nx}\right)}{{n}!}={e}^{{acos}\left({x}\right)} {sin}\left({asin}\left({x}\right)\right) \\ $$$$\:\:\:….{m}.{n} \\ $$
Answered by Dwaipayan Shikari last updated on 15/May/21
(1/(2i))Σ_(n=1) ^∞ a^n (e^(inx) /(n!))−a^n (e^(−inx) /(n!))  =(1/(2i))(e^(ae^(ix) ) −e^(ae^(−ix) ) )=(1/(2i))(e^(acos(x)+aisin(x)) −e^(acos(x)−aisin(x)) )  =(e^(acos(x)) /(2i))(e^(aisin(x)) −e^(−aisin(x)) )=sin(asinx)e^(acosx)
$$\frac{\mathrm{1}}{\mathrm{2}{i}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{a}^{{n}} \frac{{e}^{{inx}} }{{n}!}−{a}^{{n}} \frac{{e}^{−{inx}} }{{n}!} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\left({e}^{{ae}^{{ix}} } −{e}^{{ae}^{−{ix}} } \right)=\frac{\mathrm{1}}{\mathrm{2}{i}}\left({e}^{{acos}\left({x}\right)+{aisin}\left({x}\right)} −{e}^{{acos}\left({x}\right)−{aisin}\left({x}\right)} \right) \\ $$$$=\frac{{e}^{{acos}\left({x}\right)} }{\mathrm{2}{i}}\left({e}^{{aisin}\left({x}\right)} −{e}^{−{aisin}\left({x}\right)} \right)={sin}\left({asinx}\right){e}^{{acosx}} \\ $$
Commented by mnjuly1970 last updated on 15/May/21
thanks alot..
$${thanks}\:{alot}.. \\ $$
Commented by Dwaipayan Shikari last updated on 15/May/21
:−)
$$\left.:−\right) \\ $$
Answered by mindispower last updated on 15/May/21
Ω(x)=ImΣ_(n≥1) ((a^n e^(inx) )/(n!))=ImΣ_(n≥1) (((ae^(ix) )^n )/(n!)),if a∈R  =ImΣ_(n≥0) (((ae^(ix) )^n )/(n!))=Im(e^(ae^(ix) ) )  =Im(e^(acos(x)) (cos(ax)+isin(ax))  =e^(acos(x)) sin(sin(ax))
$$\Omega\left({x}\right)={Im}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{{a}^{{n}} {e}^{{inx}} }{{n}!}={Im}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left({ae}^{{ix}} \right)^{{n}} }{{n}!},{if}\:{a}\in\mathbb{R} \\ $$$$={Im}\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\left({ae}^{{ix}} \right)^{{n}} }{{n}!}={Im}\left({e}^{{ae}^{{ix}} } \right) \\ $$$$={Im}\left({e}^{{acos}\left({x}\right)} \left({cos}\left({ax}\right)+{isin}\left({ax}\right)\right)\right. \\ $$$$={e}^{{acos}\left({x}\right)} {sin}\left({sin}\left({ax}\right)\right) \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 15/May/21
grateful..
$${grateful}.. \\ $$
Commented by mindispower last updated on 15/May/21
pleasur
$${pleasur} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *