Menu Close

Nice-Calculus-prove-that-x-n-1-a-n-sin-nx-n-e-acos-x-sin-asin-x-m-n-




Question Number 141057 by mnjuly1970 last updated on 15/May/21
         .....Nice ......  ......Calculus.....     prove that:   Ω(x):=Σ_(n=1) ^∞ a^n .((sin(nx))/(n!))=e^(acos(x)) sin(asin(x))     ....m.n
..NiceCalculus..provethat:Ω(x):=n=1an.sin(nx)n!=eacos(x)sin(asin(x)).m.n
Answered by Dwaipayan Shikari last updated on 15/May/21
(1/(2i))Σ_(n=1) ^∞ a^n (e^(inx) /(n!))−a^n (e^(−inx) /(n!))  =(1/(2i))(e^(ae^(ix) ) −e^(ae^(−ix) ) )=(1/(2i))(e^(acos(x)+aisin(x)) −e^(acos(x)−aisin(x)) )  =(e^(acos(x)) /(2i))(e^(aisin(x)) −e^(−aisin(x)) )=sin(asinx)e^(acosx)
12in=1aneinxn!aneinxn!=12i(eaeixeaeix)=12i(eacos(x)+aisin(x)eacos(x)aisin(x))=eacos(x)2i(eaisin(x)eaisin(x))=sin(asinx)eacosx
Commented by mnjuly1970 last updated on 15/May/21
thanks alot..
thanksalot..
Commented by Dwaipayan Shikari last updated on 15/May/21
:−)
:)
Answered by mindispower last updated on 15/May/21
Ω(x)=ImΣ_(n≥1) ((a^n e^(inx) )/(n!))=ImΣ_(n≥1) (((ae^(ix) )^n )/(n!)),if a∈R  =ImΣ_(n≥0) (((ae^(ix) )^n )/(n!))=Im(e^(ae^(ix) ) )  =Im(e^(acos(x)) (cos(ax)+isin(ax))  =e^(acos(x)) sin(sin(ax))
Ω(x)=Imn1aneinxn!=Imn1(aeix)nn!,ifaR=Imn0(aeix)nn!=Im(eaeix)=Im(eacos(x)(cos(ax)+isin(ax))=eacos(x)sin(sin(ax))
Commented by mnjuly1970 last updated on 15/May/21
grateful..
grateful..
Commented by mindispower last updated on 15/May/21
pleasur
pleasur

Leave a Reply

Your email address will not be published. Required fields are marked *