Question Number 140498 by mnjuly1970 last updated on 08/May/21
$$\:\:\:\:\:\:……..\:{nice}\:\:\:…….\:\:{calculus}……. \\ $$$$\:\:\:\:\:\:{simplify}: \\ $$$$\:\:\:\:\boldsymbol{\phi}\left({x}\right):=\:{sin}\left(\frac{{x}}{\mathrm{2}}\right)\left(\mathrm{1}+\mathrm{2}\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}{cos}\left({mx}\right)\right) \\ $$$$\:\:\:\: \\ $$
Answered by Dwaipayan Shikari last updated on 08/May/21
$$\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}{cos}\left({mx}\right)=\frac{{cos}\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}{x}\right){sin}\left(\frac{{nx}}{\mathrm{2}}\right)}{{sin}\left(\frac{{x}}{\mathrm{2}}\right)} \\ $$$$\phi\left({x}\right)={sin}\left(\frac{{x}}{\mathrm{2}}\right)+\mathrm{2}{sin}\left(\frac{{nx}}{\mathrm{2}}\right){cos}\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}{x}\right) \\ $$
Commented by Dwaipayan Shikari last updated on 08/May/21
$$\underset{{m}=\mathrm{1}} {\overset{{n}} {\sum}}{cos}\left({mx}\right)={cosx}+{cos}\mathrm{2}{x}+..+{cosnx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{sin}\frac{{x}}{\mathrm{2}}}\left(\mathrm{2}{cosxsin}\frac{{x}}{\mathrm{2}}+..+{cosnxsin}\frac{{x}}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{sin}\frac{{x}}{\mathrm{2}}}\left({sin}\frac{\mathrm{3}{x}}{\mathrm{2}}−{sin}\frac{{x}}{\mathrm{2}}+{sin}\frac{\mathrm{5}{x}}{\mathrm{2}}−{sin}\frac{\mathrm{3}{x}}{\mathrm{2}}+…+{sin}\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right){x}−{sin}\left({n}−\frac{\mathrm{1}}{\mathrm{2}}\right){x}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{sin}\frac{{x}}{\mathrm{2}}}\left({sin}\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right){x}−{sin}\frac{{x}}{\mathrm{2}}\right)=\frac{\mathrm{2}{cos}\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}{x}\right){sin}\left(\frac{{nx}}{\mathrm{2}}\right)}{\mathrm{2}{sin}\frac{{x}}{\mathrm{2}}} \\ $$$$=\frac{{cos}\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}{x}\right){sin}\left(\frac{{nx}}{\mathrm{2}}\right)}{{sin}\left(\frac{{x}}{\mathrm{2}}\right)} \\ $$
Commented by mnjuly1970 last updated on 08/May/21
$${thanks}\:{alot}\:{mr}\:{payan}.. \\ $$
Answered by mnjuly1970 last updated on 08/May/21