Question Number 141320 by mnjuly1970 last updated on 17/May/21
$$\:\:\:\:\:\:\:……{nice}\:……{calculuus}….. \\ $$$$\:\:\:\:{prove}\:\:{that}:: \\ $$$$\:\:\:\:\boldsymbol{\phi}:=\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \frac{\mathscr{A}\:{rctan}\left({x}^{\mathrm{2}} {y}^{\mathrm{2}} \right)}{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }{dxdy}=\frac{\pi^{\mathrm{2}} \sqrt{\mathrm{2}}}{\mathrm{16}} \\ $$$$….. \\ $$
Answered by mindispower last updated on 19/May/21
$${x}={rcos}\left({s}\right),{y}={rsin}\left({s}\right) \\ $$$$\Leftrightarrow\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \int_{\mathrm{0}} ^{\infty} \frac{{arctan}\left({r}^{\mathrm{4}} \frac{{sin}^{\mathrm{2}} \left(\mathrm{2}{a}\right)}{\mathrm{4}}\right)}{{r}^{\mathrm{3}} \left(\mathrm{1}β\frac{{sin}^{\mathrm{2}} \left(\mathrm{2}{a}\right)}{\mathrm{2}}\right)}{drda} \\ $$$${y}=\frac{{sin}^{\mathrm{2}} \left(\mathrm{2}{a}\right)}{\mathrm{4}},{like}\:{parameter}\:{independent}\:{withe}\:{r} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{arctan}\left({r}^{\mathrm{4}} {y}\right)}{{r}^{\mathrm{3}} \left(\mathrm{1}β\mathrm{2}{y}\right)}{dr}=\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}β\mathrm{2}{y}\right)}\int_{\mathrm{0}} ^{\infty} \frac{{arctn}\left({r}^{\mathrm{4}} {y}\right)}{{r}^{\mathrm{4}} }.{dr}^{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{arctan}\left({r}^{\mathrm{2}} {y}\right)}{{r}^{\mathrm{2}} }{dr}=\sqrt{{y}}\int_{\mathrm{0}} ^{\infty} \frac{{arcatn}\left(\left({r}\sqrt{{y}}\right)^{\mathrm{2}} \right)}{\left({r}\sqrt{{y}}\right)^{\mathrm{2}} }.{d}\left({r}\sqrt{{y}}\right) \\ $$$$=\sqrt{{y}}\int_{\mathrm{0}} ^{\infty} \frac{{arcatn}\left({x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} }{dx}=\pi\sqrt{\frac{{y}}{\mathrm{2}}} \\ $$$${proof}\:\int_{\mathrm{0}} ^{\infty} {arcatan}\left({x}^{\mathrm{2}} \right)\frac{{dx}}{{x}^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{2}{dx}}{\mathrm{1}+{x}^{\mathrm{4}} } \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{2}}{\mathrm{1}+{x}}.\frac{\mathrm{1}}{\mathrm{4}}{x}^{β\frac{\mathrm{3}}{\mathrm{4}}} {dx}=\frac{\mathrm{1}}{\mathrm{2}}\beta\left(\frac{\mathrm{1}}{\mathrm{4}},\frac{\mathrm{3}}{\mathrm{4}}\right)=\frac{\mathrm{1}}{\mathrm{2}}.\frac{\pi}{{sin}\left(\frac{\pi}{\mathrm{4}}\right)} \\ $$$$=\frac{\pi}{\:\sqrt{\mathrm{2}}}..{proved} \\ $$$$=\frac{\pi}{\mathrm{2}\sqrt{\pi}}\underset{\mathrm{0}} {\int}^{\frac{\pi}{\mathrm{2}}} .\frac{{sin}\left(\mathrm{2}{a}\right)}{\:\mathrm{2}}.\frac{\mathrm{1}}{\mathrm{1}β\frac{{sin}^{\mathrm{2}} \left(\mathrm{2}{a}\right)}{\mathrm{2}}} \\ $$$$=\frac{\pi}{\mathrm{4}}.\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} .\frac{{sin}\left(\mathrm{2}{a}\right)}{\mathrm{2}β{sin}^{\mathrm{2}} \left(\mathrm{2}{a}\right)}=\frac{\pi}{\mathrm{8}}\sqrt{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{β{d}\left({cos}\left(\mathrm{2}{a}\right)\right)}{\mathrm{1}+{cos}^{\mathrm{2}} \left(\mathrm{2}{a}\right)} \\ $$$$=\frac{\pi}{\mathrm{8}}\sqrt{\mathrm{2}}.\left(β{arcatan}\left({cos}\left(\mathrm{2}{a}\right)\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\frac{\pi}{\mathrm{8}}.\frac{\pi}{\mathrm{2}}.\sqrt{\mathrm{2}}=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}.\sqrt{\mathrm{2}} \\ $$$$\Leftrightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{{arcatn}\left({x}^{\mathrm{2}} {y}^{\mathrm{2}} \right)}{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }{dxdy}=\frac{\pi^{\mathrm{2}} }{\mathrm{16}}.\sqrt{\mathrm{2}} \\ $$