Menu Close

nice-integral-dx-x-2-pi-2-cosh-x-




Question Number 142545 by mnjuly1970 last updated on 02/Jun/21
              nice .....integral       Ω:=∫_(−∞) ^(  +∞) (dx/((x^2 +π^2 )cosh(x))) =?  .....
nice..integralΩ:=+dx(x2+π2)cosh(x)=?..
Answered by mindispower last updated on 02/Jun/21
=∫_(−∞) ^∞ ((2dx)/((x^2 +π^2 )(e^x +e^(−x) )))=∫_(−∞) ^∞ f(x)dx  e^x +e^(−x) =0⇒e^(2x) =−1⇒x_k =(ikπ+i(π/2)),k∈Z  Ω=2iπ(Σ_(k=0) ^∞ Res(f,x_k )+Res(f,iπ))  =2iπ(Σ_(k=0) ^∞ (1/((−π^2 (k+(1/2))^2 +π^2 )((−1)^k i))+(2/(2iπ(−2)))  −1−(2/π)Σ_0 ^∞ (((−1)^k )/((k+(1/2))^2 −1))  =−1−(2/π)(Σ_(k=0) ^∞ (((−1)^k )/((k−(1/2))(k+(3/2))))  −1−(1/π)Σ_(k≥0) (((−1)^k )/((k−(1/2))))+(1/π)Σ_(k≥0) (((−1)^k )/(k+(3/2)))  −1−(1/π)(−2−2+Σ_(k≥2) (((−1)^k )/(k−(1/2))))+(1/π)Σ_(k≥0) (((−1)^k )/(k+(3/2)))  first sum k→k+2  we get Ω=−1+(4/π)−(1/π){Σ_(k≥0) (((−1)^(k+2) )/((k+2−(1/2))))−Σ_(k≥0) (((−1)^k )/(k+(3/2)))}  =−1+(4/π)  ∫_(−∞) ^∞ (dx/(ch(x)(x^2 +π^2 )))=−1+(4/π)
=2dx(x2+π2)(ex+ex)=f(x)dxex+ex=0e2x=1xk=(ikπ+iπ2),kZΩ=2iπ(k=0Res(f,xk)+Res(f,iπ))=2iπ(k=01(π2(k+12)2+π2)((1)ki+22iπ(2)12π0(1)k(k+12)21=12π(k=0(1)k(k12)(k+32)11πk0(1)k(k12)+1πk0(1)kk+3211π(22+k2(1)kk12)+1πk0(1)kk+32firstsumkk+2wegetΩ=1+4π1π{k0(1)k+2(k+212)k0(1)kk+32}=1+4πdxch(x)(x2+π2)=1+4π

Leave a Reply

Your email address will not be published. Required fields are marked *