Menu Close

nice-integral-T-0-arctan-x-x-ln-x-1-dx-pi-pi-4-




Question Number 143454 by mnjuly1970 last updated on 14/Jun/21
     ........nice .......integral.......    T  :=∫_0 ^( ∞) ((arctan(x))/x^( ln(x) +1) )dx=^? ((π(√π))/4)
..nice.integral.T:=0arctan(x)xln(x)+1dx=?ππ4
Answered by mindispower last updated on 14/Jun/21
x→(1/x)⇒  A=∫_0 ^∞ (((π/2)−arctan(x))/(((1/x))^(−ln(x)+1) )).(dx/x^2 )=(π/2)∫_0 ^∞ (dx/x^(ln(x)+1) )−∫_0 ^∞ ((arctan(x)dx)/x^(ln(x)+1) )  2A=(π/2)∫_0 ^∞ (dx/x^(ln(x)+1) )  ln(x)=u  A=(π/4)∫_(−∞) ^∞ (du/e^u^2  )=(π/2)∫_0 ^∞ e^(−u^2 ) du=(π/4)∫_0 ^∞ e^(−t) .t^(−(1/2)) dt  =(π/4)Γ((1/2))=(π/4)(√π)  ∫_0 ^∞ ((arctan(x))/x^(ln(x)+1) )dx=((π(√π))/4)
x1xA=0π2arctan(x)(1x)ln(x)+1.dxx2=π20dxxln(x)+10arctan(x)dxxln(x)+12A=π20dxxln(x)+1ln(x)=uA=π4dueu2=π20eu2du=π40et.t12dt=π4Γ(12)=π4π0arctan(x)xln(x)+1dx=ππ4
Commented by mnjuly1970 last updated on 14/Jun/21
thankd alot..
thankdalot..
Commented by mindispower last updated on 14/Jun/21
pleasur
pleasur

Leave a Reply

Your email address will not be published. Required fields are marked *