Menu Close

nice-math-calculate-n-1-1-




Question Number 140789 by mnjuly1970 last updated on 12/May/21
        .......nice.....math....        calculate:: Θ:= Σ_(n=1) ^∞ (1/) =??
.nice..math.calculate::Θ:=n=11=??
Answered by Dwaipayan Shikari last updated on 12/May/21
Σ_(n=1) ^∞ (1/ (((2n)),(n) ))=Σ_(n=1) ^∞ ((nΓ(n)Γ(n+1))/(Γ(2n+1)))=∫_0 ^1 Σnx^n (1−x)^n (1/(1−x))dx  =∫_0 ^1 (1/(1−x))(((x(1−x))/((1−x+x^2 )^2 )))dx=∫_0 ^1 (x/((1−x+x^2 )^2 ))dx  =(1/2)∫_0 ^1 ((2x−1)/((1−x+x^2 )^2 ))+(1/2)∫_0 ^1 (1/((1−x+x^2 )^2 ))dx  =0−(1/(2.3))∫_0 ^1 (1/((x−(1/2)−(((√3)i)/2))^2 ))+(1/((x−(1/2)+((√3)/2)i)^2 ))−(2/((1−x+x^2 )))dx  =(1/3)∫_0 ^1 (1/((x−(1/2))^2 +(((√3)/2))^2 ))+(1/(2.3))((1/((1/2)−((√3)/2)i))+(1/((1/2)+((√3)/2)i))+(2/( (√3)i+1))−(2/( (√3)i−1)))  =(2/(3(√3)))((π/6)+(π/6))+(1/6)(1+1)  =((2π)/( 27(√3)))+(1/3)
n=11(2nn)=n=1nΓ(n)Γ(n+1)Γ(2n+1)=01Σnxn(1x)n11xdx=0111x(x(1x)(1x+x2)2)dx=01x(1x+x2)2dx=12012x1(1x+x2)2+12011(1x+x2)2dx=012.3011(x123i2)2+1(x12+32i)22(1x+x2)dx=13011(x12)2+(32)2+12.3(11232i+112+32i+23i+123i1)=233(π6+π6)+16(1+1)=2π273+13
Commented by mnjuly1970 last updated on 12/May/21
thanks alot...
thanksalot
Answered by Ar Brandon last updated on 12/May/21
S_n =Σ_(n=1) ^∞ (1/( ^(2n) C_n ))=Σ_(n=1) ^∞ ((n!×n!)/((2n)!))=Σ_(n=1) ^∞ ((Γ^2 (n+1))/(Γ(2n+1)))=Σ_(n=1) ^∞ nβ(n+1,n)        =Σ_(n=1) ^∞ n∫_0 ^1 x^(n−1) (1−x)^n dx=∫_0 ^1 (1/x)Σ_(n=1) ^∞ n(x−x^2 )^n dx  f(t)=Σ_(n=1) ^∞ t^n =(t/(1−t))⇒f ′(t)=Σ_(n=1) ^∞ nt^(n−1) =(1/((t−1)^2 ))  S_n =∫_0 ^1 (1/x)∙((x−x^2 )/((x−x^2 −1)^2 ))dx=∫_0 ^1 ((1−x)/((x^2 −x+1)^2 ))dx   Ostrogradsky gives  S_n =(1/3)[((x+1)/(x^2 −x+1))+∫(dx/(x^2 −x+1))]_0 ^1        =[(1/3)∙((x+1)/(x^2 −x+1))+(2/( 3(√3)))arctan(((2x−1)/( (√3))))]_0 ^1        =(2/3)−(1/3)+(2/(3(√3)))((π/6)+(π/6))=(1/3)+((2π)/( 9(√3)))
Sn=n=112nCn=n=1n!×n!(2n)!=n=1Γ2(n+1)Γ(2n+1)=n=1nβ(n+1,n)=n=1n01xn1(1x)ndx=011xn=1n(xx2)ndxf(t)=n=1tn=t1tf(t)=n=1ntn1=1(t1)2Sn=011xxx2(xx21)2dx=011x(x2x+1)2dxOstrogradskygivesSn=13[x+1x2x+1+dxx2x+1]01=[13x+1x2x+1+233arctan(2x13)]01=2313+233(π6+π6)=13+2π93
Commented by mnjuly1970 last updated on 12/May/21
grateful...
grateful

Leave a Reply

Your email address will not be published. Required fields are marked *