Question Number 140789 by mnjuly1970 last updated on 12/May/21

Answered by Dwaipayan Shikari last updated on 12/May/21

Commented by mnjuly1970 last updated on 12/May/21

Answered by Ar Brandon last updated on 12/May/21
![S_n =Σ_(n=1) ^∞ (1/( ^(2n) C_n ))=Σ_(n=1) ^∞ ((n!×n!)/((2n)!))=Σ_(n=1) ^∞ ((Γ^2 (n+1))/(Γ(2n+1)))=Σ_(n=1) ^∞ nβ(n+1,n) =Σ_(n=1) ^∞ n∫_0 ^1 x^(n−1) (1−x)^n dx=∫_0 ^1 (1/x)Σ_(n=1) ^∞ n(x−x^2 )^n dx f(t)=Σ_(n=1) ^∞ t^n =(t/(1−t))⇒f ′(t)=Σ_(n=1) ^∞ nt^(n−1) =(1/((t−1)^2 )) S_n =∫_0 ^1 (1/x)∙((x−x^2 )/((x−x^2 −1)^2 ))dx=∫_0 ^1 ((1−x)/((x^2 −x+1)^2 ))dx Ostrogradsky gives S_n =(1/3)[((x+1)/(x^2 −x+1))+∫(dx/(x^2 −x+1))]_0 ^1 =[(1/3)∙((x+1)/(x^2 −x+1))+(2/( 3(√3)))arctan(((2x−1)/( (√3))))]_0 ^1 =(2/3)−(1/3)+(2/(3(√3)))((π/6)+(π/6))=(1/3)+((2π)/( 9(√3)))](https://www.tinkutara.com/question/Q140795.png)
Commented by mnjuly1970 last updated on 12/May/21
