Menu Close

nice-math-prove-that-0-pi-2-ln-1-sin-x-cos-x-tan-x-dx-5pi-2-72-




Question Number 139217 by mnjuly1970 last updated on 24/Apr/21
              ..... nice .... .... math....     prove that:   𝛗=∫_0 ^( (Ο€/2)) ((ln(1+sin(x).cos(x)))/(tan(x)))dx=((5Ο€^2 )/(72))
$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:…..\:{nice}\:….\:….\:{math}…. \\ $$$$\:\:\:{prove}\:{that}: \\ $$$$\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{ln}\left(\mathrm{1}+{sin}\left({x}\right).{cos}\left({x}\right)\right)}{{tan}\left({x}\right)}{dx}=\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{72}} \\ $$
Commented by liki last updated on 24/Apr/21
Commented by liki last updated on 24/Apr/21
..help pls
$$..\mathrm{help}\:\mathrm{pls} \\ $$
Commented by mr W last updated on 24/Apr/21
to liki:  please donβ€²t insert your question into  the threads of other people for other  questions! just open a new thread for  your own question! if you donβ€²t know  how, just read the ForumHelp!
$${to}\:{liki}: \\ $$$${please}\:{don}'{t}\:{insert}\:{your}\:{question}\:{into} \\ $$$${the}\:{threads}\:{of}\:{other}\:{people}\:{for}\:{other} \\ $$$${questions}!\:{just}\:{open}\:{a}\:{new}\:{thread}\:{for} \\ $$$${your}\:{own}\:{question}!\:{if}\:{you}\:{don}'{t}\:{know} \\ $$$${how},\:{just}\:{read}\:{the}\:{ForumHelp}! \\ $$
Answered by qaz last updated on 24/Apr/21
Ο†=∫_0 ^(Ο€/2) ((ln(1+sin xcos x))/(tan x))dx  =∫_0 ^(Ο€/2) ((ln(1+((tan x)/(1+tan^2 x))))/(tan x))dx  =∫_0 ^(Ο€/2) ((ln(1+tan x+tan^2 x)βˆ’ln(1+tan^2 x))/(tan x))dx  =∫_0 ^∞ ((ln(1+x+x^2 )βˆ’ln(1+x^2 ))/(x(1+x^2 )))dx  =∫_0 ^1 ((ln(1+x+x^2 )βˆ’ln(1+x^2 ))/(x(1+x^2 )))dx+∫_1 ^∞ ((ln(1+x+x^2 )βˆ’ln(1+x^2 ))/((1/x)(1+(1/x^2 ))))(βˆ’(1/x^2 ))dx  =∫_0 ^1 ((ln(1+x+x^2 )βˆ’ln(1+x^2 ))/(x(1+x^2 )))dx+∫_0 ^1 ((ln(1+x+x^2 )βˆ’ln(1+x^2 ))/(1+x^2 ))xdx  =∫_0 ^1 ((ln(1+x+x^2 )βˆ’ln(1+x^2 ))/x)dx  =∫_0 ^1 ((ln(1βˆ’x^3 )βˆ’ln(1βˆ’x))/x)dxβˆ’(1/2)Ξ·(2)  =βˆ’Ξ£_(n=1) ^∞ ∫_0 ^1 (x^(3nβˆ’1) /n)dx+(Ο€^2 /6)βˆ’(Ο€^2 /(24))  =βˆ’Ξ£_(n=1) ^∞ (1/(3n^2 ))+(Ο€^2 /8)  =βˆ’(Ο€^2 /(18))+(Ο€^2 /8)  =((5Ο€^2 )/(72))
$$\phi=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{ln}\left(\mathrm{1}+\mathrm{sin}\:{x}\mathrm{cos}\:{x}\right)}{\mathrm{tan}\:{x}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{ln}\left(\mathrm{1}+\frac{\mathrm{tan}\:{x}}{\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} {x}}\right)}{\mathrm{tan}\:{x}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{ln}\left(\mathrm{1}+\mathrm{tan}\:{x}+\mathrm{tan}\:^{\mathrm{2}} {x}\right)βˆ’{ln}\left(\mathrm{1}+\mathrm{tan}\:^{\mathrm{2}} {x}\right)}{\mathrm{tan}\:{x}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)βˆ’{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)βˆ’{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}+\int_{\mathrm{1}} ^{\infty} \frac{{ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)βˆ’{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\frac{\mathrm{1}}{{x}}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}\left(βˆ’\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)βˆ’{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)βˆ’{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }{xdx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)βˆ’{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{{x}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}βˆ’{x}^{\mathrm{3}} \right)βˆ’{ln}\left(\mathrm{1}βˆ’{x}\right)}{{x}}{dx}βˆ’\frac{\mathrm{1}}{\mathrm{2}}\eta\left(\mathrm{2}\right) \\ $$$$=βˆ’\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{3}{n}βˆ’\mathrm{1}} }{{n}}{dx}+\frac{\pi^{\mathrm{2}} }{\mathrm{6}}βˆ’\frac{\pi^{\mathrm{2}} }{\mathrm{24}} \\ $$$$=βˆ’\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{3}{n}^{\mathrm{2}} }+\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$=βˆ’\frac{\pi^{\mathrm{2}} }{\mathrm{18}}+\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$=\frac{\mathrm{5}\pi^{\mathrm{2}} }{\mathrm{72}} \\ $$
Commented by mnjuly1970 last updated on 24/Apr/21
  great, thanks alot master...
$$\:\:{great},\:{thanks}\:{alot}\:{master}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *