Menu Close

now-try-this-one-dx-x-1-2-x-1-3-x-1-6-




Question Number 69637 by MJS last updated on 26/Sep/19
...now try this one:  ∫(dx/(x^(1/2) −x^(1/3) −x^(1/6) ))=
nowtrythisone:dxx1/2x1/3x1/6=
Answered by Kunal12588 last updated on 26/Sep/19
t=x^(1/6)   ⇒dt=(1/6)x^(−5/6) dx⇒dx=6x^(5/6) dt=6t^5 dt  ∫((6t^5 )/(t^3 −t^2 −t))dt=6∫(t^4 /(t^2 −t−1))dt  t^4 =(t^2 −t−1)(t^2 +t+2)+3t+2  I=6∫(t^2 +t+2)dt+6∫((3t+2)/(t^2 −t−1))dt  I_1 =∫((3t−2)/(t^2 −t+1))dt  3t−2=A(d/dt)(t^2 −t+1)+B  ⇒A=(3/2),B=(7/2)  I_1 =(3/2)∫((d(t^2 −t+1))/(t^2 −t+1))+(7/2)∫(dt/(t^2 −t+1))  I_1 =(3/2)log∣t^2 −t+1∣+(7/2)∫(dt/((t−(1/2))^2 +(3/4)))  I_1 =(3/2)log∣t^2 −t+1∣+(7/2)×(1/(2(√3)))tan^(−1) (((t−(1/2))/((√3)/2)))+c  I_1 =(3/2)log∣t^2 −t+1∣+(7/(4(√3)))tan^(−1) (((2t−1)/( (√3))))+c  I=2t^3 +3t^2 +12t+9log(t^2 −t+1)+((7(√3))/2)tan^(−1) (((2t−1)/( (√3))))+c  I=2x^(1/2) +3x^(1/3) +12x^(1/6) +9log(x^(1/3) −x^(1/6) +1)+7(√3)tan^(−1) (((2(√(x^(1/3) −x^(1/6) +1))−(√3))/(2x^(1/6) −1)))+c
t=x1/6dt=16x5/6dxdx=6x5/6dt=6t5dt6t5t3t2tdt=6t4t2t1dtt4=(t2t1)(t2+t+2)+3t+2I=6(t2+t+2)dt+63t+2t2t1dtI1=3t2t2t+1dt3t2=Addt(t2t+1)+BA=32,B=72I1=32d(t2t+1)t2t+1+72dtt2t+1I1=32logt2t+1+72dt(t12)2+34I1=32logt2t+1+72×123tan1(t1232)+cI1=32logt2t+1+743tan1(2t13)+cI=2t3+3t2+12t+9log(t2t+1)+732tan1(2t13)+cI=2x1/2+3x1/3+12x1/6+9log(x1/3x1/6+1)+73tan1(2x1/3x1/6+132x1/61)+c

Leave a Reply

Your email address will not be published. Required fields are marked *