Menu Close

number-theory-Solve-in-Z-1-x-1-y-1-xy-1-4-




Question Number 142514 by mnjuly1970 last updated on 01/Jun/21
               ..... number  theory.....         Solve in Z :            (1/x)+(1/y)+(1/(xy)) =(1/4) ....?       .........
..numbertheory..SolveinZ:1x+1y+1xy=14.?
Answered by ArielVyny last updated on 01/Jun/21
conditions x≠0  y≠0  xy≠0  (1/x)=t    (1/y)=u  t+u+tu=(1/4)  t(1+u)=(1/4)−u  t=−((u−(1/4))/(1+u))  −((u−(1/4))/(1+u))+u−(((u−(1/4))/(1+u)))×u=(1/4)  −((4u−1)/(1+u))+u−(((4u−4)/(1+u)))×u=1  −((4u−1)/(1+u))+((u(1+u))/(1+u))−(((4u^2 −4u)/(1+u)))=1  −4u+1+u(1+u)−(4u^2 −4u)=1+u  −4u+1+u+u^2 −4u^2 +4u=1+u  −3u^2 =0    u=0  t=−((u−(1/4))/(1+u))  t=−((−(1/4))/1)        t=(1/4)=(1/x)
conditionsx0y0xy01x=t1y=ut+u+tu=14t(1+u)=14ut=u141+uu141+u+u(u141+u)×u=144u11+u+u(4u41+u)×u=14u11+u+u(1+u)1+u(4u24u1+u)=14u+1+u(1+u)(4u24u)=1+u4u+1+u+u24u2+4u=1+u3u2=0u=0t=u141+ut=141t=14=1x
Answered by ArielVyny last updated on 01/Jun/21
it is possible ?
itispossible?
Answered by ArielVyny last updated on 01/Jun/21
i think is not possible
ithinkisnotpossible
Answered by ajfour last updated on 01/Jun/21
(1/x)+(1/y)+(1/(xy))=(1/4)  ⇒ 4x+4y+4=xy  (x−4)(y−4)=20  =1×20=2×10=4×5  ⇒ (x,y)=(5,24) , (6,14) , (8,9)
1x+1y+1xy=144x+4y+4=xy(x4)(y4)=20=1×20=2×10=4×5(x,y)=(5,24),(6,14),(8,9)
Commented by mnjuly1970 last updated on 01/Jun/21
thsnks alot...    (2,−6) , (6,−2),(−16,3) ,(3,−16)      for example:      (2,−6)      (1/2)−(1/6)−(1/(12))=((6−2−1)/(12))=(1/4) ..✓
thsnksalot(2,6),(6,2),(16,3),(3,16)forexample:(2,6)1216112=62112=14..
Answered by mnjuly1970 last updated on 01/Jun/21
  solution:     ((y+x+1)/(xy))=(1/4)          4x+4y+4−xy=0      x(4−y)=−4y−4       x=((−4y−4)/(4−y))=((4(y+1))/(y−4))=4.((y−4+5)/(y−4))    =4+((20)/(y−4))  ....x,y ∈Z        y−4=±1  , y−4=±2  , y−4=4   y−4=5 ,y−4=±10   y−4=±20     ,......easy...
solution:y+x+1xy=144x+4y+4xy=0x(4y)=4y4x=4y44y=4(y+1)y4=4.y4+5y4=4+20y4.x,yZy4=±1,y4=±2,y4=4y4=5,y4=±10y4=±20,easy

Leave a Reply

Your email address will not be published. Required fields are marked *