Menu Close

Of-all-rectangular-boxes-without-a-lid-and-having-a-given-surface-area-Find-the-one-with-maximum-volume-




Question Number 6135 by sanusihammed last updated on 15/Jun/16
Of all rectangular boxes without a lid and having a given   surface area . Find the one with maximum volume.
Ofallrectangularboxeswithoutalidandhavingagivensurfacearea.Findtheonewithmaximumvolume.
Commented by FilupSmith last updated on 15/Jun/16
Edge lengths a, b, c  Max volume when a=b=c  V=abc=a^3 =b^3 =c^3
Edgelengthsa,b,cMaxvolumewhena=b=cV=abc=a3=b3=c3
Answered by Rasheed Soomro last updated on 16/Jun/16
Let a,b and c are dimenntions of   rectangular box.  The surface area =2(ab+bc+ca)  Let the lid has a and c dimentions  The area of lid surface=ac  A=Without lid surface area=2(ab+bc+ca)−ac                                                       =2ab+2bc+ca    Let there is a cubic box (without a lid ) of dimention d  having the surface area equal to that of above box.  A=Without lid surface area=d^2 +2d^2 +d^2 =5d^2   ∴             2ab+2bc+ca=5d^2                   d=(√((2ab+2bc+ca)/5))    Now let′s compare the volumes of above boxes  Volume of rectangular box=abc  Volume of cubic  box=d^3 =(((2ab+2bc+ca)/5))^(3/2)   (((2ab+2bc+ca)/5))^(3/2) ?  abc   ∀ a,b,c>0  Assumption:  (((2ab+2bc+ca)/5))^(3/2) ≥  abc   ∀ a,b,c>0  Can′t continue
Leta,bandcaredimenntionsofrectangularbox.Thesurfacearea=2(ab+bc+ca)LetthelidhasaandcdimentionsTheareaoflidsurface=acA=Withoutlidsurfacearea=2(ab+bc+ca)ac=2ab+2bc+caLetthereisacubicbox(withoutalid)ofdimentiondhavingthesurfaceareaequaltothatofabovebox.A=Withoutlidsurfacearea=d2+2d2+d2=5d22ab+2bc+ca=5d2d=2ab+2bc+ca5NowletscomparethevolumesofaboveboxesVolumeofrectangularbox=abcVolumeofcubicbox=d3=(2ab+2bc+ca5)32(2ab+2bc+ca5)32?abca,b,c>0Assumption:(2ab+2bc+ca5)32abca,b,c>0Cantcontinue

Leave a Reply

Your email address will not be published. Required fields are marked *