Menu Close

Old-question-related-to-greatest-int-function-lim-x-0-1-x-1-1-1-lim-x-0-1-x-




Question Number 2624 by prakash jain last updated on 23/Nov/15
Old question related to greatest int function.  lim_(x→0) ⌊1+x⌋=1  ⌊1⌋=1  lim_(x→0) ⌊1−x⌋=?
Oldquestionrelatedtogreatestintfunction.limx01+x=11=1limx01x=?
Answered by Filup last updated on 24/Nov/15
if ⌊a±b⌋=⌊a⌋±⌊b⌋:     for  (a, b)∈Z    lim_(x→0) ⌊1+x]=lim_(x→0) ⌊1⌋+lim_(x→0) ⌊x⌋  =1+lim_(x→0) ⌊x⌋=1+⌊0⌋=1    Similarly  lim_(x→0) ⌊1−x⌋=lim_(x→0) ⌊1⌋−lim_(x→0) ⌊x⌋  =1−⌊0⌋=1
ifa±b=a±b:for(a,b)Zlimx01+x]=limx01+limx0x=1+limx0x=1+0=1Similarlylimx01x=limx01limx0x=10=1
Commented by Yozzi last updated on 24/Nov/15
Let a=1.99,b=1.01  ⇒⌊1.99+1.01⌋=⌊3⌋=3≠⌊1.99⌋+⌊1.01⌋=1+1=2
Leta=1.99,b=1.011.99+1.01=3=31.99+1.01=1+1=2
Commented by Filup last updated on 24/Nov/15
Thanks for the proof!  Back to the drawing board!
Thanksfortheproof!Backtothedrawingboard!
Commented by Filup last updated on 24/Nov/15
if  ⌊a±b⌋=⌊a⌋±⌊b⌋ for (a, b)∈Z  then my answer is true  I will edit my post!    if  a, b∈Z, ⌊a⌋=a, ⌊b⌋=b
ifa±b=a±bfor(a,b)ZthenmyansweristrueIwilleditmypost!ifa,bZ,a=a,b=b
Answered by Yozzi last updated on 24/Nov/15
Let y=⌊1−x⌋. lim_(x→0^+ ) y=lim_(x→0^+ ) ⌊1−x⌋  For 0≤x<1, 0<1−x≤1⇒1−x is a   fraction or 1⇒⌊1−x⌋=0 or ⌊1−x⌋=1  ⇒lim_(x→0^+ ) ⌊1−x⌋ is undefined (cannot be sure to choose 1 or 0)  For −1<x≤0, 1≤1−x<2⇒⌊1−x⌋=1.  ∴lim_(x→0^− ) ⌊1−x⌋=1. lim_(x→0^− ) y≠lim_(x→0^+ ) y since lim_(x→0^+ ) y does not exist.  ⇒lim_(x→0) y does not exist. Graphically,  there is a jump discontinuity in  y=⌊1−x⌋ at x=0.
Lety=1x.limx0+y=limx0+1xFor0x<1,0<1x11xisafractionor11x=0or1x=1limx0+1xisundefined(cannotbesuretochoose1or0)For1<x0,11x<21x=1.limx01x=1.limx0ylimx0+ysincelimx0+ydoesnotexist.limx0ydoesnotexist.Graphically,thereisajumpdiscontinuityiny=1xatx=0.

Leave a Reply

Your email address will not be published. Required fields are marked *