Menu Close

On-definit-la-fonction-L-f-t-p-0-f-t-e-pt-dt-Calculer-L-t-n-n-p-




Question Number 143495 by lapache last updated on 15/Jun/21
On definit la fonction   L(f(t))(p)=∫_0 ^(+∞) f(t)e^(−pt) dt  Calculer L(((t^n /(n!))))(p)
OndefinitlafonctionL(f(t))(p)=0+f(t)eptdtCalculerL((tnn!))(p)
Answered by Ar Brandon last updated on 15/Jun/21
L((t^n /(n!)))(p)=∫_0 ^∞ (t^n /(n!))e^(−pt) dt=(1/p^(n+1) )∫_0 ^∞ (t^n /(n!))e^(−t) dt                       =(1/p^(n+1) )∙((Γ(n+1))/(n!))=(1/p^(n+1) )
L(tnn!)(p)=0tnn!eptdt=1pn+10tnn!etdt=1pn+1Γ(n+1)n!=1pn+1
Commented by lapache last updated on 15/Jun/21
Tu fais comment pour avoir le  (1/p^(n+1) )∫_0 ^∞ (t^n /(n!))e^(−t) dt    ??????
Tufaiscommentpouravoirle1pn+10tnn!etdt??????
Commented by Ar Brandon last updated on 15/Jun/21
A^�  l′aide d′un changement de variable  u=pt⇒t=(u/p) ⇒dt=(1/p)du  ∫_0 ^∞ (t^n /(n!))e^(−pt) dt=∫_0 ^∞ (1/(n!))((u/p))^n e^(−u) ((du/p))  =∫_0 ^∞ (1/(n!))((1/p))^(n+1) u^n e^(−u) du
A`laidedunchangementdevariableu=ptt=updt=1pdu0tnn!eptdt=01n!(up)neu(dup)=01n!(1p)n+1uneudu

Leave a Reply

Your email address will not be published. Required fields are marked *