Question Number 137056 by Ar Brandon last updated on 29/Mar/21
$$\:\:\:\:\mathrm{On}\:\mathrm{this}\:\mathrm{same}\:\mathrm{day}\:\mathrm{last}\:\mathrm{year}\:\mathrm{I}\:\mathrm{made}\:\mathrm{my}\:\mathrm{first}\:\mathrm{on}\:\mathrm{this}\:\mathrm{forum}\:\left(\mathrm{Q86484}\right) \\ $$$$\mathrm{and}\:\mathrm{I}\:\mathrm{was}\:\mathrm{very}\:\mathrm{astonished}\:\mathrm{by}\:\mathrm{the}\:\mathrm{answers}\:\mathrm{which}\:\mathrm{I}\:\mathrm{received}. \\ $$$$\mathrm{I}\:\mathrm{underestimated}\:\mathrm{the}\:\mathrm{place}\:\mathrm{at}\:\mathrm{first}\:\mathrm{before}\:\mathrm{getting}\:\mathrm{to}\:\mathrm{know}\:\mathrm{it} \\ $$$$\mathrm{better}.\:\mathrm{And}\:\mathrm{I}\:\mathrm{realised}\:\mathrm{I}\:\mathrm{knew}\:\mathrm{nothing}.\: \\ $$$$\:\:\:\:\mathrm{I}'\mathrm{m}\:\mathrm{grateful}\:\mathrm{with}\:\mathrm{all}\:\mathrm{the}\:\mathrm{teachings}\:\mathrm{which}\:\mathrm{I}'\mathrm{ve}\:\mathrm{acquired}\:\mathrm{from}\: \\ $$$$\mathrm{you}\:\mathrm{all}.\:\mathrm{You}\:\mathrm{guys}\:\mathrm{are}\:\mathrm{just}\:\mathrm{so}\:\mathrm{amazing}.\:\mathrm{Thank}\:\mathrm{you}\:\mathrm{once}\:\mathrm{more}. \\ $$$$\mathrm{Special}\:\mathrm{thanks}\:\mathrm{to}\:\mathrm{you}\:\mathrm{too}\:\mathrm{Mr}\:\mathrm{Tinku}-\mathrm{Tara}.\: \\ $$😉
Commented by Dwaipayan Shikari last updated on 29/Mar/21
$${It}\:{was}\:\mathrm{29}{th}\:{June}\:{may}\:{be}\:{when}\:{i}\:{first}\:{entered}\:.. \\ $$
Commented by Ar Brandon last updated on 29/Mar/21
You first drew my attention in August.
Commented by Dwaipayan Shikari last updated on 29/Mar/21
$${You}\:{drew}\:{on}\:{July} \\ $$
Commented by Dwaipayan Shikari last updated on 29/Mar/21
$${Your}\:{Question}\:{in}\:{another}\:{form} \\ $$$$\int\frac{{x}^{{m}} }{\mathrm{1}+{x}^{\mathrm{2}{m}} }{dx}=\frac{\mathrm{1}}{{m}}\int\frac{{u}^{\frac{\mathrm{1}}{{m}}} }{\mathrm{1}+{u}^{\mathrm{2}} }{du}=\frac{\mathrm{1}}{\mathrm{2}{m}}\int\frac{{t}^{\frac{\mathrm{1}}{\mathrm{2}{m}}−\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}+{t}}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{m}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)_{{n}} }{{n}!}\left(−\mathrm{1}\right)^{{n}} {t}^{{n}+\frac{\mathrm{1}}{\mathrm{2}{m}}−\frac{\mathrm{1}}{\mathrm{2}}} =\frac{{t}^{\frac{\mathrm{1}}{\mathrm{2}{m}}+\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{2}{m}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)_{{n}} \left(−\mathrm{1}\right)^{{n}} }{{n}!\left({n}+\frac{\mathrm{1}}{\mathrm{2}{m}}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{t}^{{n}} \\ $$$$=\frac{{t}^{\frac{\mathrm{1}}{\mathrm{2}{m}}+\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{2}{m}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)_{{n}} \left(−\mathrm{1}\right)^{{n}} \Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}{m}}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{{n}!\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}{m}}+\frac{\mathrm{3}}{\mathrm{2}}\right)}{t}^{{n}} \\ $$$$=\frac{{t}^{\frac{\mathrm{1}}{\mathrm{2}{m}}+\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{2}{m}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)_{{n}} \left(\frac{\mathrm{1}}{\mathrm{2}{m}}+\frac{\mathrm{1}}{\mathrm{2}}\right)_{{n}} \Gamma\left(\frac{\mathrm{1}}{\mathrm{2}{m}}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{{n}!\:\left(\frac{\mathrm{1}}{\mathrm{2}{m}}+\frac{\mathrm{3}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}{m}}+\frac{\mathrm{3}}{\mathrm{2}}\right)}\left(−{t}\right)^{{n}} \\ $$$$=\frac{{t}^{\frac{{m}+\mathrm{1}}{\mathrm{2}{m}}} }{{m}+\mathrm{1}}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)_{{n}} \left(\frac{{m}+\mathrm{1}}{\mathrm{2}{m}}\right)_{{n}} }{{n}!\left(\frac{\mathrm{3}{m}+\mathrm{1}}{\mathrm{2}{m}}\right)_{{n}} }\left(−{t}\right)^{{n}} =\frac{{t}^{\frac{{m}+\mathrm{1}}{\mathrm{2}{m}}} }{{m}+\mathrm{1}}\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(−\mathrm{1},\frac{{m}+\mathrm{1}}{\mathrm{2}{m}};\frac{\mathrm{3}{m}+\mathrm{1}}{\mathrm{2}{m}};−{t}\right) \\ $$
Commented by Rasheed.Sindhi last updated on 29/Mar/21
$$\mathcal{H}{appy}\:'\:{birth}\:{day}\:'\:{to}\:{you}! \\ $$
Commented by Ar Brandon last updated on 29/Mar/21
Hihihi
Commented by Ar Brandon last updated on 29/Mar/21
Yeah, birth on forum, haha ! Thanks Sir
Commented by Rasheed.Sindhi last updated on 29/Mar/21
I am trying to find emojies of a weeping boy and feeder
(You are one year old!)
Commented by Rasheed.Sindhi last updated on 29/Mar/21
(pl excuse me if you don`t like this joke)
Commented by Ar Brandon last updated on 29/Mar/21
Commented by Rasheed.Sindhi last updated on 29/Mar/21
BTW I apreciate your contribution towards this forum and your sense of maths.
(I say same thing about some other youngers like Dwipayan, bemath.)
Commented by Ar Brandon last updated on 29/Mar/21
I too appreciate them. I learned a lot from Shikari, despite the fact that he's a year younger than me