Menu Close

p-p-1-dp-




Question Number 10147 by ridwan balatif last updated on 27/Jan/17
∫(√(p/(p−1)))dp=...?
$$\int\sqrt{\frac{\mathrm{p}}{\mathrm{p}−\mathrm{1}}}\mathrm{dp}=…? \\ $$
Commented by prakash jain last updated on 27/Jan/17
p=x^2   dp=2xdx  =∫(√(x^2 /(x^2 −1))) 2xdx  =∫ ((2x^2 )/( (√(x^2 −1)))) dx  substitute x=cosh t  dx=sinh t dt  =∫2cosh^2 t dt  =∫(1+cosh 2t)dt  =(t+(1/2)sinh 2t)+C  =(t+sinh tcosh t)+C  =(cosh^(−1) x+x(√(x^2 −1)))+C  =ln (x+(√(x^2 −1)))+x(√(x^2 −1))+C  =ln ((√p)+(√(p−1)))+(√(p(p−1)))+C
$${p}={x}^{\mathrm{2}} \\ $$$${dp}=\mathrm{2}{xdx} \\ $$$$=\int\sqrt{\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} −\mathrm{1}}}\:\mathrm{2}{xdx} \\ $$$$=\int\:\frac{\mathrm{2}{x}^{\mathrm{2}} }{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:{dx} \\ $$$$\mathrm{substitute}\:{x}=\mathrm{cosh}\:{t} \\ $$$${dx}=\mathrm{sinh}\:{t}\:{dt} \\ $$$$=\int\mathrm{2cosh}^{\mathrm{2}} {t}\:{dt} \\ $$$$=\int\left(\mathrm{1}+\mathrm{cosh}\:\mathrm{2}{t}\right){dt} \\ $$$$=\left({t}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sinh}\:\mathrm{2}{t}\right)+{C} \\ $$$$=\left({t}+\mathrm{sinh}\:{t}\mathrm{cosh}\:{t}\right)+{C} \\ $$$$=\left(\mathrm{cosh}^{−\mathrm{1}} {x}+{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)+{C} \\ $$$$=\mathrm{ln}\:\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)+{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}+{C} \\ $$$$=\mathrm{ln}\:\left(\sqrt{{p}}+\sqrt{{p}−\mathrm{1}}\right)+\sqrt{{p}\left({p}−\mathrm{1}\right)}+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *