Menu Close

P-x-3x-75-2x-14-3x-2-1-What-is-the-remainder-when-the-above-polynomial-of-s-divided-by-x-2-x-1-




Question Number 137335 by liberty last updated on 01/Apr/21
  P(x) = 3x^75 + 2x^14 - 3x^2 - 1. What is the remainder when the above polynomial of s divided by x^2+x+1?
$$ \\ $$P(x) = 3x^75 + 2x^14 – 3x^2 – 1. What is the remainder when the above polynomial of s divided by x^2+x+1?
Answered by EDWIN88 last updated on 01/Apr/21
Apply the Factor theorem . That means  to write x^2  = −x−1 and observe that  x^3  =−x^2 −x=x+1−x=1  x^4  = x ; x^5  = −x−1 , x^6 = 1, x^7 =x  it follows that   3x^(75) +2x^(14) −3x^2 −3 = 3(1)+2(x^2 )−3x^2 −1  = 2−x^2  =2−(−x−1)= x+3
$$\mathrm{Apply}\:\mathrm{the}\:\mathrm{Factor}\:\mathrm{theorem}\:.\:\mathrm{That}\:\mathrm{means} \\ $$$$\mathrm{to}\:\mathrm{write}\:{x}^{\mathrm{2}} \:=\:−{x}−\mathrm{1}\:\mathrm{and}\:\mathrm{observe}\:\mathrm{that} \\ $$$${x}^{\mathrm{3}} \:=−{x}^{\mathrm{2}} −{x}={x}+\mathrm{1}−{x}=\mathrm{1} \\ $$$${x}^{\mathrm{4}} \:=\:{x}\:;\:{x}^{\mathrm{5}} \:=\:−{x}−\mathrm{1}\:,\:{x}^{\mathrm{6}} =\:\mathrm{1},\:{x}^{\mathrm{7}} ={x} \\ $$$$\mathrm{it}\:\mathrm{follows}\:\mathrm{that}\: \\ $$$$\mathrm{3}{x}^{\mathrm{75}} +\mathrm{2}{x}^{\mathrm{14}} −\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3}\:=\:\mathrm{3}\left(\mathrm{1}\right)+\mathrm{2}\left({x}^{\mathrm{2}} \right)−\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1} \\ $$$$=\:\mathrm{2}−{x}^{\mathrm{2}} \:=\mathrm{2}−\left(−{x}−\mathrm{1}\right)=\:{x}+\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *