Menu Close

p-x-x-1-2-Q-x-3x-8-p-x-x-2-Q-x-R-R-




Question Number 144060 by Khalmohmmad last updated on 21/Jun/21
p(x)=(x−1)^2 Q(x)+3x+8  p(x)=(x−2)Q(x)+R  R=?
$${p}\left({x}\right)=\left({x}−\mathrm{1}\right)^{\mathrm{2}} {Q}\left({x}\right)+\mathrm{3}{x}+\mathrm{8} \\ $$$${p}\left({x}\right)=\left({x}−\mathrm{2}\right){Q}\left({x}\right)+{R} \\ $$$${R}=? \\ $$
Commented by Rasheed.Sindhi last updated on 21/Jun/21
Q(x) is same in both cases!!!?
$${Q}\left({x}\right)\:{is}\:{same}\:{in}\:{both}\:{cases}!!!? \\ $$
Answered by Rasheed.Sindhi last updated on 21/Jun/21
p(x)=(x−1)^2 Q_1 (x)+3x+8.....(i)  p(x)=(x−2)Q_2 (x)+R.....(ii)   ;  R=?  ^• Let Q_1 (x)=q(constant  p(x)=(x−1)^2 q+3x+8          =qx^2 −2xq+q+3x+8          =qx^2 +(3−2q)x+q+8  When divided by x−2          R=q(2)^2 +(3−2q)(2)+q+8          R=4q+6−4q+q+8              =q+14  ^(• ) Q_1 (x)=ax+b      p(x)=(x−1)^2 Q_1 (x)+3x+8  p(x)=(x−1)^2 (ax+b)+3x+8          =(x^2 −2x+1)(ax+b)+3x+8     =ax^3 +bx^2 −2ax^2 −2bx+ax+b+3x+8    =ax^3 +(b−2a)x^2 +(a+3−2b)x+b+8  When divided by x−2  R=p(2)=a(2)^3 +(b−2a)(2)^2 +(a+3−2b)(2)+b+8  =8a+4b−8a+2a+6−4b+b+8  =2a+b+14  No unique answer.  R depends upon Q_1 (x).
$${p}\left({x}\right)=\left({x}−\mathrm{1}\right)^{\mathrm{2}} {Q}_{\mathrm{1}} \left({x}\right)+\mathrm{3}{x}+\mathrm{8}…..\left({i}\right) \\ $$$${p}\left({x}\right)=\left({x}−\mathrm{2}\right){Q}_{\mathrm{2}} \left({x}\right)+{R}…..\left({ii}\right)\:\:\:;\:\:{R}=? \\ $$$$\:^{\bullet} {Let}\:{Q}_{\mathrm{1}} \left({x}\right)={q}\left({constant}\right. \\ $$$${p}\left({x}\right)=\left({x}−\mathrm{1}\right)^{\mathrm{2}} {q}+\mathrm{3}{x}+\mathrm{8} \\ $$$$\:\:\:\:\:\:\:\:={qx}^{\mathrm{2}} −\mathrm{2}{xq}+{q}+\mathrm{3}{x}+\mathrm{8} \\ $$$$\:\:\:\:\:\:\:\:={qx}^{\mathrm{2}} +\left(\mathrm{3}−\mathrm{2}{q}\right){x}+{q}+\mathrm{8} \\ $$$${When}\:{divided}\:{by}\:{x}−\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:{R}={q}\left(\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{3}−\mathrm{2}{q}\right)\left(\mathrm{2}\right)+{q}+\mathrm{8} \\ $$$$\:\:\:\:\:\:\:\:{R}=\mathrm{4}{q}+\mathrm{6}−\mathrm{4}{q}+{q}+\mathrm{8} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:={q}+\mathrm{14} \\ $$$$\:^{\bullet\:} {Q}_{\mathrm{1}} \left({x}\right)={ax}+{b}\:\:\:\: \\ $$$${p}\left({x}\right)=\left({x}−\mathrm{1}\right)^{\mathrm{2}} {Q}_{\mathrm{1}} \left({x}\right)+\mathrm{3}{x}+\mathrm{8} \\ $$$${p}\left({x}\right)=\left({x}−\mathrm{1}\right)^{\mathrm{2}} \left({ax}+{b}\right)+\mathrm{3}{x}+\mathrm{8} \\ $$$$\:\:\:\:\:\:\:\:=\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}\right)\left({ax}+{b}\right)+\mathrm{3}{x}+\mathrm{8} \\ $$$$\:\:\:={ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} −\mathrm{2}{ax}^{\mathrm{2}} −\mathrm{2}{bx}+{ax}+{b}+\mathrm{3}{x}+\mathrm{8} \\ $$$$\:\:={ax}^{\mathrm{3}} +\left({b}−\mathrm{2}{a}\right){x}^{\mathrm{2}} +\left({a}+\mathrm{3}−\mathrm{2}{b}\right){x}+{b}+\mathrm{8} \\ $$$${When}\:{divided}\:{by}\:{x}−\mathrm{2} \\ $$$${R}={p}\left(\mathrm{2}\right)={a}\left(\mathrm{2}\right)^{\mathrm{3}} +\left({b}−\mathrm{2}{a}\right)\left(\mathrm{2}\right)^{\mathrm{2}} +\left({a}+\mathrm{3}−\mathrm{2}{b}\right)\left(\mathrm{2}\right)+{b}+\mathrm{8} \\ $$$$=\cancel{\mathrm{8}{a}}+\cancel{\mathrm{4}{b}}−\cancel{\mathrm{8}{a}}+\mathrm{2}{a}+\mathrm{6}−\cancel{\mathrm{4}{b}}+{b}+\mathrm{8} \\ $$$$=\mathrm{2}{a}+{b}+\mathrm{14} \\ $$$${No}\:{unique}\:{answer}. \\ $$$${R}\:{depends}\:{upon}\:{Q}_{\mathrm{1}} \left({x}\right). \\ $$
Answered by Rasheed.Sindhi last updated on 21/Jun/21
p(x)=(x−1)^2 Q_1 (x)+3x+8  p(x)=(x−2)Q_2 (x)+R  ;  R=?  p(x) when is divided by x−2 giving   remainder R  (x−1)^2 Q_1 (x)+3x+8  is divided by  x−2 giving remainder R  R=p(2)=(2−1)^2 Q_1 (2)+3(2)+8  R=p(2)=Q_1 (2)+14  ^• Let  Q_1 (x)=q (constant)  R=q+14  ^• Let Q_1 (x)=ax+b  R=Q_1 (2)+14=a(2)+b+14            R=2a+b+14  ^• Let Q_1 (x)=ax^2 +bx+c      R=a(2)^2 +b(2)+c+14         R=4a+2b+c+14  R depends on Q_1 (x) (or Q_2 (x) ).  It′s not unique.
$${p}\left({x}\right)=\left({x}−\mathrm{1}\right)^{\mathrm{2}} {Q}_{\mathrm{1}} \left({x}\right)+\mathrm{3}{x}+\mathrm{8} \\ $$$${p}\left({x}\right)=\left({x}−\mathrm{2}\right){Q}_{\mathrm{2}} \left({x}\right)+{R}\:\:;\:\:{R}=? \\ $$$${p}\left({x}\right)\:{when}\:{is}\:{divided}\:{by}\:{x}−\mathrm{2}\:{giving}\: \\ $$$${remainder}\:{R} \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{2}} {Q}_{\mathrm{1}} \left({x}\right)+\mathrm{3}{x}+\mathrm{8}\:\:{is}\:{divided}\:{by} \\ $$$${x}−\mathrm{2}\:{giving}\:{remainder}\:{R} \\ $$$${R}={p}\left(\mathrm{2}\right)=\left(\mathrm{2}−\mathrm{1}\right)^{\mathrm{2}} {Q}_{\mathrm{1}} \left(\mathrm{2}\right)+\mathrm{3}\left(\mathrm{2}\right)+\mathrm{8} \\ $$$${R}={p}\left(\mathrm{2}\right)={Q}_{\mathrm{1}} \left(\mathrm{2}\right)+\mathrm{14} \\ $$$$\:^{\bullet} {Let}\:\:{Q}_{\mathrm{1}} \left({x}\right)={q}\:\left({constant}\right) \\ $$$${R}={q}+\mathrm{14} \\ $$$$\:^{\bullet} {Let}\:{Q}_{\mathrm{1}} \left({x}\right)={ax}+{b} \\ $$$${R}={Q}_{\mathrm{1}} \left(\mathrm{2}\right)+\mathrm{14}={a}\left(\mathrm{2}\right)+{b}+\mathrm{14} \\ $$$$\:\:\:\:\:\:\:\:\:\:{R}=\mathrm{2}{a}+{b}+\mathrm{14} \\ $$$$\:^{\bullet} {Let}\:{Q}_{\mathrm{1}} \left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c} \\ $$$$\:\:\:\:{R}={a}\left(\mathrm{2}\right)^{\mathrm{2}} +{b}\left(\mathrm{2}\right)+{c}+\mathrm{14} \\ $$$$\:\:\:\:\:\:\:{R}=\mathrm{4}{a}+\mathrm{2}{b}+{c}+\mathrm{14} \\ $$$${R}\:{depends}\:{on}\:{Q}_{\mathrm{1}} \left({x}\right)\:\left({or}\:{Q}_{\mathrm{2}} \left({x}\right)\:\right). \\ $$$${It}'{s}\:{not}\:{unique}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *