Menu Close

Part-1-S-ln-a-bi-a-b-R-i-2-1-is-S-C-b-0-Part-2-t-ln-ln-ln-k-k-R-k-gt-1-t-C-is-t-undefined-




Question Number 5091 by FilupSmith last updated on 11/Apr/16
Part 1  S=ln(a+bi),      a, b∈R                                   i^2 =−1  is S∈C?       (b≠0)    Part 2  t=ln(ln(...(ln(k)))),    k∈R, k>1  ∴t∈C?  is t undefined?
Part1S=ln(a+bi),a,bRi2=1isSC?(b0)Part2t=ln(ln((ln(k)))),kR,k>1tC?istundefined?
Commented by prakash jain last updated on 11/Apr/16
S=x+iy  e^(x+iy) =a+bi  e^x (cos y+isin y)=a+bi
S=x+iyex+iy=a+biex(cosy+isiny)=a+bi
Commented by 123456 last updated on 11/Apr/16
e^x cos y=a  e^x sin y=b  e^(2x) =a^2 +b^2   e^x =(√(a^2 +b^2 ))  x=ln (√(a^2 +b^2 ))  tan y=(b/a)  y=arg(a+ib)+2πk
excosy=aexsiny=be2x=a2+b2ex=a2+b2x=lna2+b2tany=bay=arg(a+ib)+2πk
Commented by Yozzii last updated on 12/Apr/16
After a certain number of  successive ln−applications to k>1, the result  is negative so that the ln−applications  thereafter give t having a complex  result. t would become undefined if  ever t_n =0 in t_(n+1) =lnt_n  , t_1 =lnk, n≥1.    Suppose after k+1 ln−applications  t_(k+1) <0.⇒lnt_k <0⇒0<t_k <1.  lnt_k =(−lnt_k )(−1+0)=(−lnt_k )(cosπ+isinπ)  lnt_k =(−lnt_k )e^(πi) =t_(k+1)   ⇒t_(k+2) =lnt_(k+1) =ln((−lnt_k )e^(πi) )  t_(k+2) =ln(−lnt_k )+πi  ⇒t_(k+2) ∈C.  If {t_n } converges we′d need to solve  u=e^u   where for sufficiently large n,  t_(n+1) =t_(n+2) =....=u.
Afteracertainnumberofsuccessivelnapplicationstok>1,theresultisnegativesothatthelnapplicationsthereaftergivethavingacomplexresult.twouldbecomeundefinedifevertn=0intn+1=lntn,t1=lnk,n1.Supposeafterk+1lnapplicationstk+1<0.lntk<00<tk<1.lntk=(lntk)(1+0)=(lntk)(cosπ+isinπ)lntk=(lntk)eπi=tk+1tk+2=lntk+1=ln((lntk)eπi)tk+2=ln(lntk)+πitk+2C.If{tn}convergeswedneedtosolveu=euwhereforsufficientlylargen,tn+1=tn+2=.=u.

Leave a Reply

Your email address will not be published. Required fields are marked *